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AFIT/GIA/ENG/07-01 

 

Abstract 

 

Advances in technology have led to the use of simple to use automated debugging 

tools which can be extremely helpful in troubleshooting problems in code.  However, a 

malicious attacker can use these same tools.  Securely designing software and keeping it 

secure has become extremely difficult.  These same easy to use debuggers can be used to 

bypass security built into software.  While the detection of an altered executable file is 

possible, it is not as easy to prevent alteration in the first place.  One way to prevent 

alteration is through code obfuscation or hiding the true function of software so as to 

make alteration difficult. This research executes blocks of code in parallel from within a 

hidden function to obscure functionality. 

  This method is tested on six programs; a DOS version of the UNIX grep utility 

and five computational functions: Fast Fourier Transfer, Successive Over-Relaxation, 

Sparse matrix-multiply, Monte Carlo integration, and dense LU factorization. It tests the 

impact of using four, eight, and twelve parallel threads of execution to obscure 

functionality. 

 The concept is effective, but is limited due to the cost associated with using 

threads. The computational functions make millions of calls to the hidden function. The 

average cost per thread for these five functions turns out to be 7.04906 x 10
-6
 seconds. 

The grep function does not make millions of calls and is therefore more feasible. Care 

must be taken to ensure the compiler does not remove parallel threads if optimization is 

used. 
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SOFTWARE PROTECTION AGAINST REVERSE ENGINEERING TOOLS 

 

 

I.  Introduction 

1.1 Background 

There are a multitude of techniques available to protect software. Development of 

these techniques is largely driven by the financial losses incurred due to copyright 

violations of digital rights and software piracy. Early defense mechanisms were largely 

limited to direct media-based protection and serial numbers. These have since evolved 

into online activations, hardware-based protection, and software as a service [Eli05]. 

Other techniques include processor dependent code, encryption, and obfuscation [CTL97, 

CTL98].   

Obfuscation with parallel code execution introduces multiple concurrent paths of 

execution which obscures the true control flow of the program and makes tracing 

execution with a dynamic disassembler difficult. Parallelization of code can be 

accomplished via various programming practices. A programmer can manually program 

the appropriate threads or identify sections of code to be parallelized during the coding 

process. A compiler then generates the appropriate threads for the sections of code 

identified by the programmer, relieving the programmer of the burden of keeping track of 

threads.   OpenMP [Ope05] is an example of a standard which supports automatic 

generation of parallel code.  
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1.2 Research Goal and Objectives  

The goal of this research is to prevent dynamic disassembly of object code. It is 

hypothesized that it is more difficult for software code to be disassembled after 

obfuscation. The particular approach to obfuscation is parallelization. Parallelization 

executes independent blocks of code concurrently leading to multiple paths of execution 

that will likely be difficult for an analyst or automated program to follow.  

1.3 Assumptions/Limitations 

An assumption in this research is that a hidden function is executed in a secure 

section of memory, local to the machine. Accessing this function adds a delay relevant to 

the size of the function. This delay is simulated to model the overhead of function 

execution. 

The use of OpenMP parallelization limits application of the techniques discussed 

in this research to multi-processor, shared memory machines. 

 

1.4 Implications 

Parallel code execution masks the functionality in an executable file which can be 

applied to software being developed by the Air Force. 

1.5 Preview 

 Chapter 2 provides relevant background information on obfuscation, debuggers, 

and current research. Chapter 3 provides the experimental methodology. Chapter 4 

provides detailed information on the design, development, and validation of the test 

system. Chapter 5 provides statistical analysis and results of the experiment. Chapter 6 

presents conclusions and recommendations for further research areas. 
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II. Literature Review 

2.1 Chapter Overview 

This chapter introduces obfuscation as a means of software protection. It also 

presents background information relevant to this research. The chapter concludes with a 

section on current research. 

2.2 Obfuscation 

Obfuscation is the process of obscuring or confusing [Web96]. Obfuscation of 

software transforms source or object code such that it is more difficult for a human to 

comprehend or a debugger to disassemble accurately. The obfuscated code should be 

functionally equivalent from a user’s perspective [Eli05]. The obfuscation process will 

likely introduce some performance degradation and an increase in size. This should be 

kept in mind when weighing the cost versus the benefit of incorporating a particular 

technique during the obfuscation process.   

2.3 Debuggers 

The operation of debuggers is key to understanding how obfuscation techniques 

prevent disassembly. Figure 2.1 shows C code with a data byte inserted in the middle of 

executable code [Dub06]. Many debuggers are not capable of disassembling the object 

code produced by this code correctly due to the insertion of the data byte and jmp.  

 

Figure 2.1. Sample Inline Assembly and C code printing “Hello, World!!!” [Dub06] 

  _asm  
  {  
   jmp L1  ; logic to “skip” data byte  
   _emit 0x00  ; inserted data byte  
   L1:  
  }  
  printf("Hello, World!!!\n");  
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The disassemblers used by debuggers are implemented in one of two ways: linear 

sweep or recursive traversal. Figure 2.2 shows the output of these two types of 

disassemblers after encountering the inserted data byte [Dub06]. WinDbg is a linear 

sweep disassembler. It goes through an executable line by line assuming everything in the 

code section is indeed code. This type of disassembler is easy to confuse through code 

obfuscation. The 00 byte in the example is interpreted as code and combined with the 

following bytes until it decodes a valid, but incorrect instruction. In Figure 2.2, WinDbg 

incorrectly produced add byte ptr [eax-28h], ch after the jmp instruction.  

 

Figure 2.2. Disassembly of linear sweep and recursive traversal disassemblers [Dub06] 

 

The other approach is a recursive traversal. This method is much more difficult to 

confuse, since it follows the control flow of the program. Upon encountering the code in 

Figure 2.1, a recursive traversal disassembler will follow the jump instruction in the 

original C code, skipping over the inserted data byte. Once the flow of control is followed 

to completion, the extra byte is then interpreted correctly as being data. IDA Pro [Ida06] 

and OllyDbg [Oll05] are recursive traversal disassemblers [Eli05].  
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Another aspect of disassemblers is the type of analysis they perform on the object 

code. Analysis can either be static or dynamic. In static disassembly the program being 

disassembled is not executed, while dynamic disassembly executes the program. The 

main difference between the two is the amount of time to complete the disassembly. 

Static disassembly is proportional to the size of the program, while dynamic is a function 

of the number of executed instructions [LiD03]. 

2.4 Obfuscation Techniques 

Obfuscation techniques can be categorized into four general areas according to the 

specific target of the transform being implemented:  layout obfuscation, data obfuscation, 

control flow obfuscation, and preventive transformation. Figure 2.3 is a graphical 

representation of the target of these techniques [CTL97]. Figure 2.4 lists some techniques 

used in the four areas [CTL97]. 

 

Figure 2.3. Obfuscation Targets [CTL97] 

Layout obfuscation makes simple changes to the program including removing the 

formatting of the program, scrambling variable names, and removing the programmer’s 

comments [CTL97]. 

Data obfuscation changes the program’s use of data or data structures. The storage 

of data can be obfuscated by replacing current data definitions with those which do not 

Layout 

Obfuscation 

 

Control 

Obfuscation 

Data 

Obfuscation 
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Transformation 

Transformation 

Target 
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make sense for their intended use. For example, a loop iteration variable can be replaced 

with another variable type besides an integer. This same principle can be applied to the 

encoding of data types. Obfuscation via aggregation of data combines scalar variables or 

changes the structure of arrays. The complexity of obfuscation introduced by the array 

manipulation operations depends on the particular change being implemented. Splitting 

and folding arrays is more likely to increase the complexity. However, merging and 

flattening arrays does not have the same effect, although it does introduce a change in 

structure. The order in which variables are declared in or the order elements occur in an 

array can be obfuscated. In some cases, obfuscation includes randomization of declaration 

order [CTL97]. 

 

 

Figure 2.4. Taxonomy of techniques [CTL97] 

 

 Control obfuscation changes the flow of the program. Change to control flow can 

be divided into three separate categories: aggregation transformations, order 
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transformations, and computation transformations [CTL97]. Aggregation transformations 

remove the program structure which was carefully designed by the programmer to make 

the code easy to follow and understand. Thus, this transformation removes the high-level 

organization which once existed. Order transformations simply randomize the order of 

instructions in the program. Computation transformations remove the original control 

flow by adding new blocks of code [Eli05].  

Opaque predicates can be used to obscure control flow. Opaque predicates are 

deterministically known to the obfuscator, but are extremely difficult to determine after 

obfuscation. Opaque predicates introduce what appears to the disassembler to be an 

undetermined path of execution [CTL97]. A trivial example is an if-then-else statement 

where the conditional is if (1==2).  The true path leads to unreachable code, which is 

never taken. While the false path is always taken [Eli05]. 

 Executing code in parallel also obscures the control flow. There are two 

approaches to parallelizing code. The first approach is to insert new functions. These new 

functions do nothing relevant to the program, but mislead the disassembler while 

executing concurrently. The second approach divides the program into blocks of code 

which have no data dependencies between blocks. These blocks are executed 

concurrently leading to multiple paths of execution. This technique has been shown to 

increase the number of execution paths exponentially during static analysis [CTL97].  

Preventive transformations introduce changes which thwart automated tools 

attempting to disassemble or deobfuscate the program. These transformations can be 

inherent or targeted. Simply reordering a loop to be performed backwards is not 
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sophisticated enough to be considered an example of an inherent preventive 

transformation. However, adding phantom variables which prevent a deobfuscator from 

reproducing the correct forward version of the loop is a preventive transformation 

[CTL97, Eli05].  

2.5 Measurement of Obfuscation 

 The level of code obfuscation can be measured using a combination of four 

metrics. The first metric is potency. Potency measures how well obfuscation techniques 

obscure the original program. McCabe and Harrison metrics are typically used to measure 

the complexity of a program. The presumption is that as complexity rises, so does the 

level of obfuscation [CTL98].  

The second metric is resilience. Resilience measures how well a program will 

stand up against attacks from an automated program. This metric combines two factors: 

the amount of time required for a programmer to design and implement the automated 

program, and the amount of time and memory required by the program to perform the 

attack [CTL98].  

The third metric is stealth. Stealth is the ability to hide from an analyst. Large 

sections of code written in different styles or introducing large extraneous numbers for 

the purpose of opaque variable calculations will draw the attention of an analyst [CTL98].  

 The fourth element is the cost. Cost includes the delay in execution time and the 

increase in program size [CTL98]. 
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2.6 Concurrency Techniques 

 Parallel code execution introduces multiple concurrent paths of execution. 

Concurrency obscures the true control flow of the program such that it is difficult for a 

dynamic disassembler to reconstruct the original correctly. 

2.6.1 Compiler Optimizations 

 Code optimization is carried out by compilers to decrease execution time. 

However, the functionality of the program must not be changed during the optimization 

process, otherwise the intent of the programmer is not preserved. Figure 2.5 is an example  

optimization process carried out by certain high performance compilers [Wol96].   

 

Figure 2.5. Structure of a high performance compiler [Wol96] 

 

When optimizing for parallel execution, each block of code needs to be 

optimized, not just the original program otherwise the program execution time will be 

limited by the unoptimized blocks. A high performance compiler uses several phases to 

optimize blocks of code. A standard front end for compilers will immediately transform 

the program into a representation that does not retain the high-level structure of the 
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program. Concurrency, however, requires the high level structure be maintained for 

further analysis in later phases of optimization. The front end of the high performance 

compiler of Figure 2.5, for example, produces abstract syntax trees in the high level 

optimization phase to use during its generation of pairs of ordered objects or tuples. The 

low level optimization phase uses the tuples, along with the details of the machine (the 

number of processors, the instruction pipeline, or the general architecture) to produce the 

appropriate instruction set for code generation [Wol96].    

2.6.2 Data Dependency 

Given enough processors, data with no dependencies would allow an entire 

program to be executed concurrently. Since such independence is unrealistic, data 

dependencies need to be determined. Figure 2.6 [Wol96] provides a simple example of 

data dependency. 

 

Figure 2.6. Sample program with data dependence graph [Wol96] 

 

In this example S2 is dependent on S1, since it uses A. If S2 were to be performed 

before or concurrently with S1, A’s value could be wrong. This is an example of flow 

dependence. Flow dependence occurs when a value is assigned and also used in a later 

S4 

S1: A=0 
S2: B=A 

S3: C=A + D 

S4: D=2 

S1 

S3 

 

 

S2 
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statement. S3 must occur before S4, since D is being reassigned in S4. This is an example 

of anti-dependence. Anti-dependence occurs when a value is used and then changed in a 

later statement. For S2 and S3, however, S2 can be executed before S3, S3 can be executed 

before S2, or they can be executed concurrently. The three cases for S2 and S3 hold as 

long as S1 is executed first. There is another type of dependence not illustrated in the 

example called output dependence. Output dependence occurs when a value is assigned in 

one statement and then later reassigned [Wol96].  

2.6.3 Conversion of Standard Code to Parallel Code 

 Achieving parallelization of code can be accomplished via programming practices 

or automated tools. A programmer can manually program the appropriate threads or 

identify sections of code to be parallelized during the coding process. 

 Automated tools relieve the programmer of having to keep track of threads. 

Modern tools are capable of taking the original code and creating threads automatically. 

In OpenMP, for example, identifying the section of code to be executed in parallel simply 

requires inserting the appropriate OpenMP pragmas [GaI05]. However, variables must be 

examined to determine if they need to be shared or kept private to the thread and declared 

appropriately. 

2.7 Current Research 

 Code obfuscation is the focus of many research efforts. Many of these center on 

preventing static disassembly. It is instructive to review them to determine how they are 

related. Disassembly approaches can be categorized based on the type of analysis being 

conducted. 
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2.7.1 Evading Static Disassembly  

2.7.1.1 Aliases  

Static analysis can be prevented by introducing extra pointers called aliases to 

obscure the control flow. In a scheme designed to disrupt control flow [WHK00], the 

effectiveness of aliases rest on three architectural elements. The first element is a secure 

control server. The second is secure network communications between the deployed 

program and the control server. The third element is regular program communication with 

the control server to verify its state.  

Aliases prevent intelligent tampering and impersonation attacks, while the 

architectural elements enable a program to perform self-checking and defend against 

other attacks. Intelligent tampering and impersonation attacks require a detailed analysis 

of the program. Aliases increase the difficulty of performing the analysis in a three-

phased approach. Figure 2.7 shows the first phase, dismantling of high level constructs 

[WHK00, WDH03]. All high-level language control flow structures (cases, whiles, for-

loops) are replaced with an equivalent if-then-goto statement. This creates a flattened 

representation of the program with data dependencies between branches as shown in 

Figure 2.8. The global variable swVar is used to control the flow. The variable is updated 

appropriately to maintain the original control flow. For example, S1 first performs the 

initialization of variables a and b, then assigns 2 to swVar. After returning to the switch, 

flow will proceed to S2. 
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Figure 2.7. Dismantling of high-level constructs [WHK00, WDH03] 

   

The second phase creates a global array in which branches are determined 

dynamically, instead of the branches being constant values assigned to swVar as in Figure 

2.8. The third phase adds extra pointers in every function. Figure 2.9 shows the final 

version of the program after completing the transformation [WHK00, WDH03]. The 

pointers are assigned through introduced code to valid data variables and global data. All 

of the original references to the variables are replaced with pointers to include the data 

dependencies introduced in the first phase. Static analysis of this code will result in the 

incorrect conclusion that the global array is changing. This increases the number of 

possible flows of control [WHK00, WDH03]. 
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Figure 2.8. Transform to indirect control transfers [WHK00, WDH03]. 

 

Figure 2.9. Completed transform using pointer manipulation [WHK00, WDH03] 

 

2.7.1.2 Junk Byte Insertion, Branch Functions, and Call Conversion 

Another obfuscation approach [LiD03] prevents static disassembly by combining 

several techniques [CTL97]. As implemented, the system is capable of implementing 

junk byte insertion, branch functions, and call conversion [LiD03]. These three 
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transformations exploit the weaknesses of static disassemblers to determine the return of 

control flow.  

Junk bytes inserted where the disassembler would typically expect to find valid 

executable code must: (1) be a partial instruction and (2) not be reachable at runtime 

[LiD03].  

Figure 2.10 illustrates the implementation of branch functions [LiD03]. The 

branching function determines the location to branch to, b1, based on the calling location, 

a1.  This exploits the assumption that the flow of control will return to the location 

following the initial function call. 

 

Figure 2.10. Branch functions [LiD03] 

 

Call conversion places junk bytes immediately after function calls, where they 

would normally be disallowed because they could be reached at runtime. The call is 

converted in a branching function which branches beyond the inserted junk bytes  

[LiD03]. 

 2.7.1.3 Obstructing Interprocedural Analysis, Merged Function Calls, and 

Redundant Return Statements 

a1: call f 

     …. 

a2: call f 

     …. 

an: call f 

     

 

       (b) Code using a branch function 

f 
a1: jmp b1 

     …. 

a2: jmp b2 

     …. 

an: jmp bn 

     

 

       (a) Original code 

b1 

   

b2 

 

bn 

b1 

   

b2 

 

bn 
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 Obfuscation techniques targeting interprocedural analysis can also obscure 

intraprocedural analysis. The [OSS03] implementation is very similar to the process used 

by [WHK00, WDH03] for creating aliases, except it focuses on obscuring flow of control 

between functions and not just within a function. It also uses a three phased approach. 

Phase one decomposes functions into smaller functions. Phase two forces the use of 

function pointers for all function calls. Phase three uses arrays to randomly store function 

addresses.  

 Additional techniques for obstructing interprocedural analysis include merging 

function calls and introducing redundant return statements [OSS03]. Figure 2.11 is an 

example of merging function calls into one function [OSS03]. Functions with the same 

return types are selected at random to be included in the new merged function. A position 

variable is created to maintain the calling position. In the example, sw is maintaining this 

position. The introduction of redundant return statements uses opaque predicates in 

conditional statements so debuggers may perceive a possible alternate flow of control.  

 

Figure 2.11. Merge function calls into one call [OSS03] 

func1()  {…} 
func2()  {…} 
 
func()  { 
… 
func1(); 
func2(); 
… 
} 

int sw; 
func1()  {…} 
func2()  {…} 
func3()  {… 
  switch (sw) { 
  case 0:  func1(); break; 
  case 1:  func2(); break; 
  … 
  } 
… 
} 
func()  {… 
  sw = (sw-1)*sw%2; … 
  func3(); 
  sw = sw*sw*(sw+1)*(sw+1)%4+1;… 
  func3();  … 
}  
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2.7.1.4 Opaque Constructs via Concurrency 

 The use of concurrent threads can increase the possible paths of execution making 

it difficult to perform static analysis. For example, n statements in a parallel section can 

be executed in n! ways  [CTL97, CoT98, Low98]. When concurrency is combined with a 

strong opaque predicate, it would require exponential time to determine the true control 

flow [CTL97, CoT98, Low98]. As implemented in [CTL97, CoT98, Low98], a global 

data structure is updated by concurrently executing threads. The data structure always 

contains a deterministic opaque value regardless of the execution order of the threads. 

Figure 2.12 [CoT98] uses the opaque predicate with the property that 7y
2
-1 will never 

equal x
2
, given any integer x and y. In this example, two threads s and t wakeup 

occasionally to make updates to the values of the global variables M.X and M.Y. The 

threads update the variables with random integers. It does not matter when the opaque 

predicate (highlighted in the figure) is evaluated because Y-1 will never equal X [CoT98], 

since X holds the square of an integer. 

2.7.2 Evading Dynamic Disassembly 

2.7.2.1 Metamorphic Code and Subroutine Reordering 

 The advanced metamorphic engine in [Dub06] is capable of evading both linear 

sweep and recursive traversal disassemblers by modifying a program during execution 

which causes the disassembler to incorrectly perform an opcode shift where it should not 

at certain points. These so-called morph points are locations where a program would 

never purposely place an invalid opcode prefix. Thus, the resulting shifted opcode 

appears believable to the disassembler. A morphing function is used to bypass the 
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intended target of the incorrect opcode shift. Figure 2.13 shows a simple function capable 

of morphing the return address [Dub06]. The morphing function below changes the return 

address of its function call while it is on the stack by incrementing it by 2.  

 

Figure 2.12. Sample java code with Opaque Constructs using Concurrency [CoT98] 

 

 

Figure 2.13. Simple morphing function [Dub06] 

 

The advanced metamorphic engine also includes subroutine reordering which uses 

a function manager to shuffle and properly maintain an offset value to add to relative 

address calls. Global parameter and return variables are also needed to handle inter-

function calls properly [Dub06].  

morphFunction proc near 
add byte ptr [esp+0], 2 
retn 

morphFunction  endp 

class S extends Thread { 
  public void run() { 
    while (true) { 
      int R = (int) (Math.random() * 65536); 
      M.X = R*R; Thread.sleep(3); 
}} 
class T extends Thread { 
   public void run() { 
      while (true) { 
         Int R = (int) (Math.random().sleep(2)); 
          M.Y = 7*R*R; Thread.sleep(2); 
          M.X *= M.X; Thread.sleep(5); 
}}} 
public class M { 
  public static int X, Y; 
  public static void main(String argv[]) { 

     S s = new S(); s.start(); 
     T t = new T(); t.start(); 
      if ((Y-1)==X)    �Opaque predicate will always evaluate to false 
        System.out.println(“Bogus code!”); 
      s.stop(); t.stop(); 
}} 
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2.7.2.2 Dynamic Code Mutation 

 Dynamic code mutation [MAM05] implements a run-time editing process which 

maps many different sections of code to the same section of memory. Functions needed at 

run-time are replaced with templates and any references to the function are replaced with 

a stub which will call an editing engine. The templates are copies of the original code 

with random obfuscations to mislead the attacker. The editing engine uses an editing 

script which has the blueprints for regenerating the function correctly. The editing script 

contains the location of the functions template, the bytes which require changes, and their 

correct values. Editing scripts are encrypted using a pseudorandom number generator 

which has been seeded with an opaque variable [MAM05].  Two separate approaches are 

implemented. Single pass mutation replaces all functions with separate templates, each 

with their own editing scripts. Cluster-based mutations locate similar functions and 

replace them with a standard template. Figure 2.14 shows an example of a cluster based 

mutation [MAM05]. Each function still has a unique editing script to be used by the 

editing engine to regenerate the original function.  

 

Figure 2.14. Run-Time code mutation with clustering [MAM05] 
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2.7.2.3 Hiding Program Slices  

Hiding program slices [ZhG03] divides function components into two parts, open 

and hidden. While it is assumed an adversary can tamper with the open components, it is 

not possible to gain access to the hidden portion, which is located on a secure device, 

such as a smart card. Figure 2.15 [ZhG03] shows both the mapping and the runtime state 

of a split function. S and C represent the state and the code of the open component, while 

S’ and C’ represent that of the hidden component. The state and code required for the two 

components to interact properly are s and c respectively. 

 

Figure 2.15. Software splitting [ZhG03] 

 

Splitting a function in this manner has two associated costs [ZhG03]. The first 

cost is the communication delay between the secure device containing the hidden 
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component and the machine containing the open component. The second cost is the 

computing power of the secure device. To keep both costs down, [ZhG03] implements 

three restrictions. First, function calls from within a loop are excluded. Second, function 

calls from within the hidden component are not allowed. Third, only scalar variables local 

to the function are candidates for moving to the hidden component. 

 Function splitting begins by selecting a variable to hide and creating a static 

version in the hidden component. Statements are identified for slicing starting with the 

one defining the hidden variable. Statements containing the hidden variable or other 

variables defined at the same time are included in the slice. Next, the remaining variables 

are analyzed to determine if they can lead to the value of the hidden variable. One of the 

strengths of this approach is the attacker does not know how many variables are being 

hidden. Keeping in mind the previous constraints (i.e. function calls, array references), 

the left and right hand sides of each slice is examined to determine if one side, both sides, 

or neither side should be include in the hidden component. Next, the remaining 

statements in the function are examined to determine if they could divulge the existence 

of hidden variable(s). If so, they are considered for inclusion or partial inclusion in the 

hidden component.  

Figure 2.16 [ZhG03] is an example where a is hidden. The mapping of the call to 

the correct location in the hidden function is contained in the variable id. Any values 

passed to the hidden function are contained in the array t. The first column shows the 

original function with the slices identified in the boxes. The second column shows the 

new open component with the same boxed statements converted to include calls to the 
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hidden component. The third column shows the hidden component and the corresponding 

required work. As an example, the second boxed statement in the open component makes 

a call to the hidden component. It sends the variables x, y, and the location l1. The array t 

of the hidden component now contains x and y as the first two elements and id contains l1. 

A switch on id causes the original work to be accomplished and the result to be stored in 

the static variable a. Any integer can be returned to the open component, since it is not 

used by any of the statements following it. The circled numbers 1-4 in the second column 

identify locations where the returned value is used, which could give an attacker useful 

information. For example, at location 1 the returned value is used to access the array A. 

The authors refer to these points as Information Leak Points (ILP) [ZhG03].   

ILPs are analyzed by the authors to determine the complexity of recreating the 

hidden components associated them. The code corresponding to each ILP is characterized 

by its arithmetic and control flow complexities [ZhG03].  Figure 2.17 shows the 

complexities associated with the code for ILP 1 from the example. The arithmetic 

complexity is determined by the statement’s type, inputs, and degree, denoted as <Type, 

Inputs, Degree>. Type can be constant, linear, polynomial, rational, or arbitrary. Inputs 

defines the number of variables from the open component which are used by the ILP. 

Degree is the highest degree polynomial when the ILP is not arbitrary. The control flow 

complexity is determined by the statement’s paths, predicates, and flow, denoted as 

<Paths, Predicates, Flow>. Paths is defined as either constant or variable. Predicates and 

Flow are both defined as either open or hidden [ZhG03]. 
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Figure 2.16. Splitting of the function f initiated with slicing of variable a [ZhG03] 

 

 

Figure 2.17. ILP Arithmetic and Control Flow Complexities [ZhG03] 

 

2.8 Summary 

 There are several methods available for obfuscating code. Some effectively 

prevent static disassembly, while others are more robust and can prevent dynamic 

disassembly. Determining the strength of obfuscation relies on several factors. All 

obfuscation techniques come with an associated cost. 

fILP = b – 1 = a + w – 1 = 3x + y + w – 1 

AC(fILP) = < Linear, 3, 1 > 

CC(fILP) = < constant, –, – > 
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III. Methodology 

3.1 Chapter Overview 

 This chapter presents the experimental methodology. The system is presented, 

along with its services, boundaries, parameters, and workload. The factors varied and 

their associated levels are also presented.  

3.2 Experimental Approach 

 To determine the validity of using parallel threads for security a baseline of the 

workload application is established to perform code slicing similar to [ZhG03]. The only 

exception being the hidden function is assumed to be executing from a secure location 

local to the machine instead of on an external device. Parallel threads are introduced to 

concurrently execute the sliced code of the hidden function. The number of parallel 

threads is adjusted to determine the impact of increasing the number of potential 

execution paths. The execution times of the different levels are analyzed to determine if 

statistically significant differences are present.  

3.3 System Boundaries 

The System Under Test (SUT) is the parallelizing system. This system creates 

obfuscated code by parallelizing the supplied benchmark code. Figure 3.1 shows the 

system boundaries, parameters, workload, metrics, and expected outcome. The 

components of the system include the parallelizing tool, the compiler, the debugger, and 

the Operating System (OS). An OS is a program that manages the computer, including 

hardware and software. It takes care of many different tasks and coordinates the different 

elements of the computer [Eli05]. A compiler takes a source file written in a high level 
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language and generates corresponding machine code [Eli05]. A debugger is a program 

which allows software developers to observe a program during execution [Eli05]. These 

four components are essential to the system because they are required to produce the 

obfuscated code. The Component Under Test (CUT) is the tool creating the parallelized 

code. 

 

Figure 3.1. System Under Test 

 

3.4 System Services 

The parallelizing tool provides a functionally equivalent parallelized version of 

the source code. OpenMP API [Ope05] constructs implement the parallelized code. 

Possible outcomes of the service are: 

• the code functions correctly and can be disassembled 

• the code functions correctly and cannot be disassembled 

• the code does not function correctly and cannot be disassembled 

• the code does not function correctly and can be disassembled 
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3.5 Workload 

The system workload is benchmark and open source code. The SciMark2.0 

benchmark [Sci2.0] and Ggrep [Gha04] are used. SciMark2.0 measures the performance 

of common numerical algorithms in scientific and engineering applications. It consists of 

five computational kernels: Fast Fourier Transfer (FFT), Successive Over-Relaxation 

(SOR), Sparse matrix-multiply, Monte Carlo integration, and dense LU factorization 

[PoM04]. Ggrep is a DOS version of the popular UNIX grep utility. It determines if a 

specified search criteria, a regular expression, matches any of the strings present in the 

search file [Gha04]. These programs are used because being open source, their 

availability will make it easier for others to reproduce the experiment if desired. 

During execution of the parallelization tool, the system will obfuscate selected 

functions from SciMark2.0 or Ggrep at a specified level. Level one provides no 

obfuscation. Level two provides hidden functionality with no parallelization. This is 

similar to hiding program slices [ZhG03]. Level three provides hidden functionality and 

parallelization with four threads of execution. Levels four and five add an additional four 

threads each. Ggrep uses three regular expressions to follow different control paths of 

execution. The three expressions are: [n].*, [I].?, and 

[!ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz].* respectively. 

A test document to search within is also provided to Ggrep. The parallelization tool 

produces new source code to run through the compiler to generate an executable file. 

3.6 Performance Metrics 
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Metrics include the file size after obfuscation, the execution speed of the 

obfuscated file, whether or not the obfuscated file is a functional equivalent of the 

original, and whether or not the obfuscated file can be disassembled. The newly compiled 

executable is measured in bytes to determine file size. The stopwatch function of Ggrep 

starts timing upon entry to the main function and stops timing after searching the test 

document for a match, just before exiting the program. The stopwatch function also 

measures the execution time for all five SciMark2 functions. Time is measured in 

seconds. Functionality of executables is measured in two ways. First, the executables 

must exit normally including timing information. Second, the output must be the same as 

the unparallelized versions. 

3.7 Parameters 

3.7.1 System Parameters 

Table 3.1 lists the system parameters of the SUT. The operating system type 

determines whether or not multi-threading is available. The presence of shared memory to 

exchange data between multiple processors is required. The number of CPUs in the 

system determines the number of blocks of code capable of true parallel execution. This 

parameter also impacts runtime overhead in the OS. The type of debugger drives the 

strength of the disassembly. The compiler chosen is capable of using OpenMP which 

provides simplified multi-threading. The optimization level determines the amount of 

optimization implemented by the compiler. The parallelizing tool is the component under 

test.  
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Table 3.1. System Parameters 

OS type 

Shared Memory 

# CPUs 

Compiler version 

Compiler optimization levels 

Debugger type 

Parallelization tool 
 

3.7.2 Workload Parameters 

Workload parameters include the SciMark2.0 and Ggrep source code, the 

particular function selection, and the test document and expression for Ggrep. The 

parallelization tool instructs the obfuscation of a particular function.  

3.8 Factors 

 Factors and their associated levels are summarized in Table 3.2. The debugger 

levels represent the two major disassemblers available. OllyDbg [Oll05] and IDAPro 

[Ida06] which are both dynamic debuggers. It is important to vary the optimization levels 

passed to the compiler as optimization can remove the effects of the parallelization tool. 

A baseline for the benchmark code is also needed. The baseline is established by running 

the system with the parallelizing tool not in use. All other experiments use the tool. 

3.9 Evaluation Technique 

A direct measurement of the system is carried out. The system is simple enough to 

create with components available at AFIT. The system is composed of: 

• Microsoft Windows XP Professional Version 5.1.2600 Service Pack 2 Build 2600  

• 4.0 GB of RAM 

• 2 dual-core processors with hyper-threading (8 Intel Xeon CPU 3.00 GHz) 
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• Microsoft Visual Studio 2005 Version 8.0.50727.42 [MVS05] 

• OllyDbg version 1.10 (dynamic disassembler) [Oll05] 

• IDAPro version 4.6.0.809 SPI 32-bit (dynamic disassembler) [Ida06] 

• SciMark 2.0 benchmark [Sci2.0] 

• Ggrep [Gha04] 

The system is validated by determining that it is functional as defined in the 

performance metrics section, and the validation section of Chapter 4.  

Table 3.2. Factors with Associated Levels 

  

Type of 

debugger 

Compiler 

switches 

Parallelizing Tool Benchmark Code 

Level 1 OllyDbg  optimization on not being used SciMark2 FFT 

Level 2 IDAPro  optimization off hidden function in use SciMark2 LU 

Level 3 

    

hidden function with 4 

threads of parallelization 

SciMark2 Monte 

Level 4 

    

hidden function with 8 

threads of parallelization 

SciMark2 SOR 

Level 5 

    

hidden function with 12 

threads of parallelization 

SciMark2 Sparse 

Level 6       Ggrep Expression 1 

Level 7       Ggrep Expression 2 

Level 8       Ggrep Expression 3 

 

  3.10 Experimental Design 

A full factorial experiment is conducted. This requires a total of 160 experiments 

without replications. Table 3.3 summarizes the factors and workload, along with the 

number of associated levels. Each experiment is replicated 5 times which was sufficient 

to obtain a width of +/- 10% from the mean at a confidence interval of 90%. This results 

in a total of 800 experiments performed. 
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Table 3.3. Experimental Design 

 Levels 

Debugger type 2 

Compiler switches 2 

Parallelization tool 5 

Benchmark code 8 

 

3.11 Summary 

 A direct measurement of the system using a full factorial experimental design 

consisting of 800 experiments is described. The SUT obfuscates various functions in the 

benchmark code. The SUT collects metrics on file size, execution speed, execution 

functionality, and whether or not the obfuscated code can be disassembled or not by the 

debugger present.  
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IV. System Design, Development, and Validation 

4.1 Chapter Overview 

 The tested system uses Ggrep and SciMark2 benchmark code. This chapter 

describes the design, development, and validation for the implemented experimental 

version of Ggrep and the five functions of SciMark2.  

4.2 System Design 

 The system functions at five different levels. Figure 4.1 shows the distinction 

between levels. Level 1 is the baseline. Level 2 provides code slicing [ZhG03] 

functionality with a hidden function. Slices of code from the baseline now function within 

the hidden function. Level 3 provides parallelization of the hidden functionality of Level 

2 with 4 threads of execution. Levels 4 and 5 provide the same parallelization of Level 3, 

except with 8 and 12 threads of execution respectively.  

 

Figure 4.1. System Levels 
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The system provides simulated security wrapping and unwrapping for the hidden 

functions of Levels 2 through 5. Before the hidden function is used, bytes of code are 

decrypted by a simple XOR procedure. When the hidden function is no longer needed, the 

bytes of code are encrypted by same XOR procedure. This is not necessary for Level 1, 

since there is no hidden function. This induces some delay relevant to the size of the 

function to emulate the effect of the hidden function operating in a secure location in 

memory.  It also includes two versions of the Ggrep and SciMark2 executables for each 

level. The first version has optimization off and the second has it on. The source code for 

both versions is identical. 

4.2.1 Hidden Function Design Details 

Slicing of the function [ZhG03] involves selecting portions to be hidden from the 

viewable function and executing them in a (assumed) secure area via a hidden function. 

Since the secure area for this experiment is not actually implemented, functions execute 

locally. However, the design of the hidden function used by the system is similar to that 

of [ZhG03]. The hidden function requires static variables to maintain values. Referencing 

of the sliced sections of code requires a call to the hidden function with a location 

variable. A case statement switches on the location variable to access the appropriate 

code and the hidden function returns a value for use by the calling function. Limitations 

set forth by [ZhG03], as described in Section 2.7.2.3, are not adhered to since the hidden 

function is not on an external device.  

4.2.2 Parallelization Design Details 
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 Parallelization of Levels 3 through 5 takes the case statements of Level 2 and 

turns them into parallelized code. Every case executes simultaneously with a minimum of 

four cases. Identifying the sections of code to execute in parallel to the compiler simply 

requires inserting the appropriate OpenMP [GaI05] pragmas. Examination of variables 

determines if sharing among all threads is necessary or if they can be kept private to a 

particular thread. 

4.3 System Development 

 This section presents differences between Levels 1 through 3. Levels 4 and 5 are 

exactly the same as Level 3 except for a global variable change to account for the 

increased number of threads used.  

4.3.1 Ggrep Development Details 

 Modification of Ggrep [Gha04] for Level 1 is limited to the addition of timing 

code for metric collection. Timing statistics are collected using the StopWatch in 

SciMark 2.0 [Sci2.0]. Timing is started after the assert(argc == 3); statement and stopped 

after exiting the while loop as whown in Figure 4.2. Timing includes Ggrep converting 

the specified search pattern to a regular expression and comparing it with each word from 

the test document. Timing is reported prior to exiting the main function.  

Level 2 modifications hide elements of the process of creating the regular 

expression present in the function toRegular. These elements are removed and placed in 

the function HtoRegular. Figures 4.3 and 4.4 present the Level 2 version of toRegular. 

Figures 4.5 and 4.6 present HtoRegular. At first glance it would appear to be straight 

forward to remove the details of toRegular, since the function already contains a case 
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statement. However, a dependency is present in the iteration counter i. This is a case of 

anti-dependence. The variable is used and then updated before its normal single 

increment. Therefore, the structure trgex of type tstring is created to hold both the regular 

expression and the current value of the counter. 

 

Figure 4.2. Ggrep.exe [Gha04] Main 

 

 

Figure 4.3. Ggrep Level 2 toRegular  

int main(int argc, char *argv[]){ 
 ifstream inFile(argv[2], ios::in); 
 if(!inFile){ 
  cerr << "Description File is not found!" << endl; 
  exit(1); 
 } 
 cout << "----------" << endl << "--------GREP--------" 
<<endl; 
 assert(argc == 3); 
 Stopwatch Q = new_Stopwatch(); 
 Stopwatch_start(Q);   �Timing Starts 
 string rex = toRegular(argv[1]); 
 rex = concatExpand(rex); 
 IntoPost p(rex); 
 rex = p.doTrans(); 
 NFA nfa = createNFA(rex); 
 while(!inFile.eof()){ 
  string word = ""; 
  inFile >> word; 
  if(process(word,nfa) == true) 
   cout << word << endl; 
  else; 
 } 
 Stopwatch_stop(Q);   �Timing Stops 
 printf("Time to Execute:        %8.8f\n" 
,Stopwatch_read(Q)); 
 Stopwatch_delete(Q); 
}//main 

string toRegular(char * expr) 
{ 
struct tstring tregex; 
tregex.iteration=0; 
tregex.expression=expr; 
string regex = ""; //the resulting regular expression 
int i=0; 
unsigned char encrypted[2768]={ 
/*006570:*/ 0x55, 0x8B, 0xEC,  
/*006573:*/ 0x6A, 0xFF, 0x68, 0xFD, 0x55, 0x4E, 0x00, 0x64, 0xA1, 0x00, 0x00, 
0x00, 0x00, 0x50, 0x81, 0xEC,  
    . . . 
    . . . 
/*007023:*/ 0xE8, 0x02, 0xB7, 0xFF, 0xFF, 0x8B, 0xE5, 0x5D, 0xC3}; 
for (i=0; i<2768; i++) 
 encrypted[i]=encrypted[i] ^ 0xFF; 
    . . . 
    . . . 
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Figure 4.4 shows two different calls to HtoRegular. Each call is the same except 

for the location value being passed. The value of i is synchronized both before and after 

the call. The current value of the regular expression is also stored in the variable regex, 

but the details, contained in HtoRegular, for creating the expression remain hidden. 

 

Figure 4.4. Calls to HtoRegular 

 

The function HtoRegular accepts the tstring z and the integer location as 

parameters as shown in Figure 4.5 and returns a tstring back to toRegular. Initialization of 

HtoRegular includes all temporary variables used by elements moved into it, as well as its 

own static version of the regular expression and the tstring hiddenstruct. It uses the 

variable firsttime to complete the work only required on the first call to it, otherwise it 

    . . . 
    . . . 
//process the entire string 
 for(int i = 0; expr[i] != '\0' && expr[i] != '\"';) 
 { 
  if(!isOper(expr[i]))//if not an operator then a char 
  { 
   tregex.iteration=i;  
   tregex=HtoRegular(tregex,0); 
   regex=tregex.expression; 
   i=tregex.iteration; 
   i++; 
  } 
  else //it is an operator 
  { 
   switch(expr[i]) //a switch on the char read 
   { 
   case '(':      
    tregex.iteration=i;  
    tregex=HtoRegular(tregex,1); 
    regex=tregex.expression; 
    i=tregex.iteration; 
    i++; 
    break; 
    ... 
    ... 

} 
  } 
 } 
 for (i=0; i<2768; i++) 
   encrypted[i]=encrypted[i] ^ 0xFF; 
 return regex;  //return the regular expression 
} 
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copies the regular expression contained in z to the static local copy expression. Hidden 

elements are accessed through the location variable. The first two cases are shown in 

Figure 4.6. The entire function contains eight cases.  

 

Figure 4.5. Initialization of Level 2 HtoRegular 

 

After completion of HtoRegular, it is necessary to simulate the function being 

wrapped and unwrapped. The functon location is identified in the executable using 

OllyDbg[Oll05]. To simplify identification, temporary print statements are added to the 

function. The limits of the entire function from the entry point to the return is identified. 

The hex digits associated with the opcodes of the function are used to distinguish the 

function in HexEdit [Hex02]. The hex for the function is copied to an array of unsigned 

characters (cf., Figure 4.3). This assures the proper length for wrapping and unwrapping 

the hidden function. Since the goal is to provide delay comparable to the size of the 

function, a simple XOR with 0xFF for each character in the array is performed just after 

tstring HtoRegular(tstring z, int location) 
{ 
 static string regex="\0"; 
 stack<char> bracketStack; 
 int m=0; 
 string tempString2 = "()*";//cannot be part of output 
 string tempS = "\0"; 
 string tempstring="\0"; 
 bool belong = true;//whether chars belong to the output or not 
 int k=0; 
 static struct tstring hiddenstruct; 
 struct tstring t; 
 t.expression=""; 
 t.iteration=0; 
 tempstring=regex; 
 static string expression=""; 
 static int firsttime=1; 
 if (firsttime) 
 { 
  expression=z.expression; 
  firsttime=0; 
 } 
 else z.expression=expression; 
   ... 
   ... 
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initialization of toRegular and just prior to exiting toRegular (cf., Figure 4.4). This same 

process is used for the remainder of the levels and functions requiring wrapping and 

unwrapping throughout the system.  

 

Figure 4.6. Hidden details of Level 2 HtoRegular 

 

Level 3 modifications transform the work of HtoRegular from Level 2 as in 

Figure 4.6, to a version executing in parallel as shown in Figure 4.7. The function 

toRegular remains unchanged. Since Level 3 limits parallelization to four threads, half of 

the eight cases execute simultaneously. When one finishes, the next section starts. This 

continues until all of the sections finish. The #pragma omp parallel sections indicate the 

sections of code to be executed in parallel using the number of threads specified by the 

global variable Num_of_Threads_to_Use. The sections themselves are identified by the 

#pragma omp section declarations. It would be possible to introduce threads that do not 

implement any functionality of the original function by simply adding additional sections. 

... 
   ... 
switch (location){ 
case 0: t=z; 
  tempstring=regex; 
  tempstring += bracket; //add a bracket 
  tempstring += t.expression[t.iteration];//the char 
  tempstring += cBracket; //enclose the bracket 
  t.expression=tempstring; 
  hiddenstruct=t; 
  break; 
case 1: t=z; 
  tempstring=regex; 
  tempstring += bracket;      
  t.expression=tempstring; 
  hiddenstruct=t; 
  break; 
case 2:   

... 
   ... 
 
}//switch 
regex=t.expression; 
return t; 
} 
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However, this was not accomplished for this example. Each thread has its own private 

version of variable tempstring. This assures any work done for the real thread of 

execution is not corrupted. The final version of the tstring t is stored in the shared array 

holding. Indirect mapping ensures no correlation between the location parameter of 

HtoRegular and the array element the thread is saving to. 

 

Figure 4.7. Parallelization in Level 3 HtoRegular 

 

Figure 4.8 is the remapping of the array to the static variables via a switch on 

location. The tstring being held is returned to toRegular. 

 

Figure 4.8. Remapping in Level 3 HtoRegular 

... 

... 
#pragma omp parallel sections firstprivate(regex, 
z)private(tempstring,tempS,t)shared(holding)num_threads(Num_Threads_to_Use) 
{  
 #pragma omp section 
 { 
  t=z; 
  tempstring=regex; 
  tempstring += bracket; //add a bracket 
  tempstring += t.expression[t.iteration];//the char 
  tempstring += cBracket; //enclose the bracket 
  t.expression=tempstring; 
  holding[4]=t; 
 } 
 #pragma omp section 
 { 
  t=z; 
  tempstring=regex; 
  tempstring += bracket;  
  holding[3]=t; 
 }  

... 

... 

... 

... 
switch (location){ 
 case 0: regex=holding[4].expression; 
   return holding[4]; 
 case 1:  regex=holding[3].expression; 
   return holding[3]; 

... 

... 
 }//switch 
} 
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 Ggrep with optimization turned on contains the property settings present in 

Figures 4.9 through 4.11. Changes made from the default program in Visual C++ 

[MVS05] to the General and Code Generation tabs are driven by incompatibilities with 

the optimization settings established in Figure 4.10 and incorrect results produced by test 

runs of Ggrep.  

 

Figure 4.9. General Tab of Ggrep Optimization-On 

 

Figure 4.10. Optimization Tab of Ggrep Optimization On 

 

Figure 4.11. Code Generation Tab of Ggrep Optimization On 
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 The optimization off version of Ggrep uses the same source code for each level 

and property settings of the optimization on version with the exception of changes to the 

optimization tab (see Figure 4.12). This ensures the same functionality. 

 

Figure 4.12. Optimization Tab of Ggrep Optimization Off 

 

 These two sets of property settings represent the optimization off and optimization 

on settings for the entire system. This includes Levels 1 through 5 and both benchmark 

applications. 

4.3.2 SciMark2 Development Details 

Several of the procedures used for Ggrep are performed for SciMark2 in the exact 

same manner. These include the wrapping and unwrapping functionality, optimization 

settings, the use of a location variable and a case statement, the use of static variables, 

parallelization techniques, and duplicate source code used for each optimization set. Once 

the slicing of the target function takes place in Level 2, it remains constant for the 

remaining levels as was the case for Ggrep. At Levels 3-5, changes take place only to the 

hidden function. Details described in the remainder of this section are limited to function 

unique details. 
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Level 1 changes to SciMark2 include setting the number of iterations in each 

function in kernel.c to constant values and including timing output. The values listed in 

Table 4.1 allow functions to operate long enough for the system to introduce some 

randomness through processor usage. These values remain constant for all Levels. 

Table 4.1. Iteration Settings for Function Calls 

Function Iterations

FFT 7000

LU 2000

Monte 10000

SOR 250

Sparse 500

 

Figure 4.13 shows the design of the function calls. The timer starts prior to loop 

entry. The loop then makes the specified number of calls to the function. After exiting the 

loop, the timer stops and the length required in seconds is displayed.  

 

Figure 4.13. FFT function call 

 

 Level 2 changes for FFT hides all of the double variables present in the function 

by placing them into the hidden function H_FFT. A call to H_FFT passes the double 

hidden, the integer dual, and the integer location. All of the doubles moved to H_FFT are 

static to retain their values after ending the function calls. Figure 4.14 shows the changes 

  ... 
  ... 
Stopwatch_start(Q); 
for (i=0; i<7000; i++)//7000 
  { 
   FFT_transform(twoN, x);     /* forward transform */ 
   FFT_inverse(twoN, x);       /* backward transform */ 
  } 
Stopwatch_stop(Q); 
printf("FFT took %f seconds\n\n",Stopwatch_read(Q)); 
  ... 
  ... 
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made to FFT_transform_internal. If the value of a variable is needed by the sliced 

function, it is returned from H_FFT and stored in the local variable hidden. The array 

data also remains local to FFT_transform_internal. 

 

 

Figure 4.14. Level 2 FFT 

 

Level 2 changes for LU_factor slices out the work being performed and moves it 

to H_LU. Some of this work includes entire for loops. Figure 4.15 contains the remaining 

functionality of LU_factor. All of the variables passed to it as parameters are forwarded to 

H_LU, as well as the current i, j, and location.  

  ... 
  ... 
for (bit = 0; bit < logn; bit++, dual *= 2) { 
   int a; 
   int b; 
   hidden=H_FFT(hidden,dual,0) * direction; 
   hidden=H_FFT(hidden,dual,1); 
   for (a=0, b = 0; b < n; b += 2 * dual) { 
     int i = 2*b ; 
     int j = 2*(b + dual); 
     hidden=H_FFT(data[j],dual,2); 
     hidden=H_FFT(data[j+1],dual,3); 
     data[j]   = data[i] - H_FFT(data[i],dual,4); 
     data[j+1] = data[i+1] - H_FFT(data[i+1],dual,5); 
     data[i]  += H_FFT(data[i], dual,4); 
     data[i+1]+= H_FFT(data[i+1],dual,5); 
    } 
   for (a = 1; a < dual; a++) { 
     H_FFT(hidden,dual,6); 
     for (b = 0; b < n; b += 2 * dual) { 
       int i = 2*(b + a); 
       int j = 2*(b + a + dual); 
       double z1_real = data[j]; 
       double z1_imag = data[j+1]; 
       H_FFT(z1_real,dual,7); 
       H_FFT(z1_imag,dual,8); 
       data[j]   = data[i]   - H_FFT(hidden,dual, 9); 
       data[j+1] = data[i+1] - H_FFT(hidden,dual, 10); 
       data[i]  += H_FFT(hidden, dual,9); 
       data[i+1]+= H_FFT(hidden, dual,10); 
      } 
   } 
 } 
  ... 
  ... 
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Figure 4.15. Level 2 LU 

  

Level 2 changes for MonteCarlo_integrate moves details of calculating the area 

under the curve and statically stores it in H_Monte. The current value is returned and 

stored in the local variable hidden. The only two calls to H_Monte are presented in Figure 

4.16. 

 

Figure 4.16. Level 2 MonteCarlo 

 

 Level 2 changes for SOR_execute moves the matrix G and its manipulation to 

H_SOR. The matrix is stored statically in H_SOR. Figure 4.17 presents the only two calls 

  ... 
  ... 
hidden=H_LU(M, N, A, pivot, i, j, 0); 
iterations=hidden; 
for (j=0; j<iterations; j++) 
  { 
   hidden=H_LU(M, N, A, pivot, i, j, 1); 
   for (i=j+1; i<M; i++) 
     hidden=H_LU(M, N, A, pivot, i, j, 2); 
   pivot[j]=hidden; 
   hidden=H_LU(M, N, A, pivot, i, j, 3); 
   if (hidden)                  
      return 1;  /* factorization failed because of zero pivot */ 
   hidden=H_LU(M, N, A, pivot, i, j, 4);  
   if (j<hidden)   
     hidden=H_LU(M, N, A, pivot, i, j, 5); 
  } 
  ... 
  ... 

... 
  ... 
 hidden=H_MonteCarlo(0,0,0);//initialize 
 for (count=0; count<Num_samples; count++) 
  { 
      double x= Random_nextDouble(R); 
      double y= Random_nextDouble(R); 
      hidden=H_MonteCarlo(x,y,1);    
  } 
 Random_delete(R); 

... 
  ... 
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to H_SOR. Although SOR_execute sends its version of the matrix to H_SOR at each call, 

it is only used when the location is 0.  

 

Figure 4.17. Level 2 SOR 

  

Level 2 changes for SparseCompRow_matmult moves sum and its calculation to 

H_Sparse. It is only available to SparseCompRow_matmult when it needs to be stored in 

the array y. Figure 4.18 presents the only two calls to H_Sparse. 

 

Figure 4.18. Level 2 Sparse 

 

Level 3 for FFT parallelizes the switch present in H_FFT from Level 2 with a 

total of 7 parallel sections. The finalizing of the hidden function, where static variables 

are assigned the correct temporary value created by the thread, is accomplished with 11 

  ... 
  ... 
for (p=0; p<num_iterations; p++) 
    { 
     for (i=1; i<Mm1; i++) 
       { 
   hidden=H_SOR(G, omega,0,i); 
        for (j=1; j<Nm1; j++) 
  hidden=H_SOR(G, omega,1,j); 
        } 
    } 

... 
  ... 

 

  ... 
  ... 
for (reps=0; reps<NUM_ITERATIONS; reps++) 
    { 
        for (r=0; r<M; r++) 
        { 
            int rowR = row[r]; 
            int rowRp1 = row[r+1]; 
   H_Sparse(val,col,x, 0,0); 
            for (i=rowR; i<rowRp1; i++) 
                hidden=H_Sparse(val,col,x, i,1); 
            y[r] = hidden; 
        } 
    } 
  ... 
  ... 
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cases. The difference rests in four cases where hidden values are returned, but no 

additional work is accomplished. Unlike the Level 3 of Ggrep, individual variables are 

defined prior to the parallel section versus in the #pragma omp parallel sections 

declaration. For example, eight variables are hidden, one for each thread that uses it. Each 

is initialized prior to entry into the parallel section. 

 Level 3 for LU parallelizes the switch present in H_LU from Level 2 with a total 

of 5 parallel sections. The finalizing of the hidden function is accomplished with 6 cases. 

H_LU contains three parallel sections and if they are executed out of order errors occur. 

Errors result from attempting to read parts of the matrix which do not yet exist. This 

problem is resolved with the use of a __try statement. Figure 4.19 shows one of these 

cases and Figure 4.20 presents two additional cases. Case 2 jumps over the if statement 

by going to the label end. This avoids additional error generation, since  temp_ab would 

not contain a value. Case 3 sets the temp3 flag to 0. 

 

Figure 4.19. Case 1 of __try in Level 3 H_LU 

 

Level 3 for Monte parallelizes the switch present in H_Monte from Level 2 with a 

total of 4 parallel sections. The finalizing of the hidden function is accomplished with 2 

#pragma omp parallel sections num_threads(Num_Threads_to_Use) 
{ 
 #pragma omp section 
 {//case 0 
 temp_minMN= M < N ? M : N; 
 }//section 
 #pragma omp section 
 {//case 1 
 temp_jp=j; 
 __try{ 
  temp_t = fabs(A[j][j]);} 
 __except(1) 
 {;} 
 }//section 

... 
  ... 
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cases. Due to the low number of cases present in Monte, two “decoy” sections exist. This 

maintains the minimum of 4 threads. The “decoy” sections do similar work to calculate 

the area under the curve. Case 1 in Figure 4.21 is the true thread, while Cases 2 and 3 are 

the “decoy” threads. Entrance into the if statement is different for all three, as well as the 

work being done to their local copies of temp_under_curve. 

 

 

Figure 4.20. Cases 2 and 3 of __try in Level 3 H_LU 

 

Level 3 for SOR parallelizes the switch present in H_SOR from Level 2 with a 

total of 4 parallel sections. The finalizing of the hidden function is accomplished with 3 

cases. One of the finalizing cases is present for validation purposes only, since the matrix 

G remains hidden in H_SOR. As with Level 3 H_Monte, two “decoy” threads exist. One 

of the other threads contains a __try statement as well. 

  ... 
  ... 

#pragma omp section 
 {//case 2  
 __try 
 { 
  temp_ab = fabs(A[i][j]); 
 } 
 __except(1) 
 {goto end;} 
     if ( temp_ab > t) 
       { 
    temp2=1; 
         temp_jp2 = i; 
         temp_t2 = temp_ab; 
        } 
 end:; 
 }//section 
 #pragma omp section 
 {//case 3 
 __try{ 
  if( A[jp][j] == 0 ) 
  temp3=1;} 
 __except(1){temp3=0;} 
 
 }//section 
  ... 
  ... 

 



 

47 

 

Figure 4.21. Decoy Sections of Level 3 H_Monte 

 

 Level 3 for Sparse parallelizes the switch present in H_Sparse from Level 2 with a 

total of 4 parallel sections. The finalizing of the hidden function is accomplished with 2 

cases. Similar to Level 3 H_SOR, two of the threads are “decoy” calculations of sum and 

one thread contains a __try statement. 

4.4 System Validation 

 This section presents the validation procedures used to determine if a function is 

working properly or not. Changes to code are typically limited to the inclusion of print 

statements. Each experiment saves output to a text file for validation. The successful 

completion of the executable is also a measure of validity. Threads are validated to be 

 ... 
 ... 
#pragma omp section 

 {//case 1 
  temp_under_curve2=under_curve; 
  if ( x*x + y*y <= 1.0) 
  { 
   temp1=1; 
   temp_under_curve2 ++; 
  } 
 }//section 
 #pragma omp section 
 {//case 2--decoy 
  temp_under_curve3=under_curve; 
  if ( x*x + y*y == 1.0) 
  { 
   temp2=1; 
   temp_under_curve3 --; 
  } 
 }//section 
 #pragma omp section 
 {//case 3--decoy 
  temp_under_curve4=under_curve; 
  if ( x*x + y*y > 1.0) 
  { 
   temp3=1; 
   temp_under_curve4=temp_under_curve4+10; 
  } 
 }//section 
  ... 
  ... 
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executing in parallel through print statements distinguishing the thread numbers. Multi-

processor validation is accomplish by viewing the Windows Task Manager similar to 

Figure 4.22 

 

Figure 4.22. Multi-Processor Validation 

 

4.4.1 Ggrep Validation Details 

 Validation of Ggrep takes place by comparing the text file for all 5 levels to one 

another for the three separate test expressions used. File comparison using the program 

KDiff3 [Eib06] determines if the output is correct or not. The files should be exactly the 

same with the exception of the time required for completion present in the files. 

4.4.2 SciMark2 Validation Details 

 Similar to Ggrep, captured text files are compared using KDiff3 [Eib06]. Unlike 

Ggrep, each of the five functions requires the inclusion of some print statements to 

examine certain data points. Figure 4.23 presents the validation for FFT. A static counter 
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is used to determine the cycle the function is currently on. When the counter hits a certain 

value, the data array prints out a select number of its elements. This same technique is 

used for LU and Sparse.  

 

Figure 4.23. FFT Validation 

 

The validation of MonteCarlo uses a switch statement to print out the value of the 

variable hidden on certain cycles. Hidden contains the value of the variable under_curve 

from H_Monte. Figure 4.24 presents the validation of MonteCarlo. 

 

Figure 4.24. MonteCarlo Validation 

 

 The validation of SOR is accomplished via a call to H_SOR during cycle 249. A 

call to H_SOR is required, since the current matrix for G is present in H_SOR. This call 

does spin off the parallel sections; however, no work is saved to the static variables, since 

if (cycle_count==13999){ 
  printf("FFT validation\n"); 
  printf("data[0] is %f\n",data[0]); 
  printf("data[100] is %f\n",data[100]); 
  printf("data[500] is %f\n",data[500]); 
  printf("data[1000] is %f\n",data[1000]); 
  printf("data[1023] is %f\n",data[1023]); 
  cycle_count=0; 
 } 
 else cycle_count++; 

switch(cycle_count){ 
  case 0: 
 printf("MonteCarlo validation\n"); 
 cycle_count++; 
 break; 
  case 100: 
 printf("Under_curve is %d at cycle %d\n",hidden,cycle_count); 
 cycle_count++; 
 break; 

... 

... 
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the switch on the location variable leads to only printing out the desired sample points of 

the matrix G. 

4.5 Summary 

 The system under test is comprised of modifications to five functions of SciMark2 

and one of Grep. Each system has five levels of obfuscation. The first level is the 

baseline. The second implements program slicing [ZhG03] with the use of a hidden 

function. The third adds four parallel threads of execution to the hidden function. The 

fourth and fifth add an additional four threads each to the hidden function. Validation 

statements and timing have been added to the functions.  
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V. Analysis and Results 

5.1 Chapter Overview 

 This chapter presents statistical analysis and results based on the data gathered 

through the experiments on Ggrep and SciMark2. Analysis is completed in three phases 

for each system. The first phase looks at the impact of the Levels within the OllyDbg data 

set with optimization off. The second looks at the impact of the Levels within the 

OllyDbg data set with optimization on. The last phase compares the two previous sets. 

Since the executables for the IDAPro and OllyDbg data sets were identical, IDAPro 

exhibited the same behavior as OllyDbg and therefore IDAPro’s analysis with exception 

of disassembly testing is presented in the Appendix (Tables A.1 through A.23 and Figures 

A.43 through A.107).  

5.2 Ggrep Analysis 

5.2.1 Ggrep Analysis, OllyDbg, Optimization-Off  

 Tables 5.1 through 5.3 present the mean execution time (in seconds), standard 

deviation, and a 90% confidence interval of Ggrep with Expressions 1 through 3 

respectively with OllyDbg and optimization turned off. Five samples are collected at each 

level. 

Table 5.1. Ggrep Expression 1 with Optimization Off and OllyDbg, Levels 1-5 

Level Mean St-Dev 

90% Confidence 

Interval 

1 (baseline) 18.299 0.007 [18.292, 18.305] 

2 (hidden function in use) 18.311 0.016 [18.297, 18.326] 

3 (hidden function w/ 4 threads) 18.206 0.007 [18.200, 18.213] 

4 (hidden function w/ 8 threads) 18.205 0.001 [18.204, 18.205] 

5 (hidden function w/ 12 threads) 18.317 0.039 [18.280, 18.354] 
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Table 5.2. Ggrep Expression 2 with Optimization Off and OllyDbg, Levels 1-5 

Level Mean St-Dev 

90% Confidence 

Interval 

1 (baseline) 5.4066 0.011 [5.3961, 5.4171] 

2 (hidden function in use) 5.438 0.038 [5.4018, 5.4742] 

3 (hidden function w/ 4 threads) 5.372 0.0067 [5.3656, 5.3784] 

4 (hidden function w/ 8 threads) 5.3658 0.0084 [5.3578, 5.3738] 

5 (hidden function w/ 12 threads) 5.3658 0.0084 [5.3578, 5.3738] 

 

Table 5.3. Ggrep Expression 3 with Optimization Off and OllyDbg, Levels 1-5 

Level Mean St-Dev 

90% Confidence 

Interval 

1 (baseline) 219.25 0.18 [219.08, 219.43] 

2 (hidden function in use) 218.26 0.06 [218.20, 218.32] 

3 (hidden function w/ 4 threads) 217.5 0.25 [217.26, 217.73] 

4 (hidden function w/ 8 threads) 217.22 0.13 [217.10, 217.34] 

5 (hidden function w/ 12 threads) 217.2 0.11 [217.09, 217.30] 

  

It is easy to see that each of the three test expressions result in varying means. 

This is expected, as the three expressions follow different paths of execution within 

Ggrep. Although there is a distinct difference in the systems caused by the expression 

used, it is not as easy to discern if there is a difference among the levels for each separate 

expression. They appear to be similar, but to determine if a statistically significant 

difference exists between the levels, the confidence interval of the mean of differences is 

calculated using the data in Table 5.4 where bi is the before measurement, ai is the after 

measurement, di is bi – ai  

Table 5.4. Ggrep Exp1, Mean of Differences Levels 1 and 2 

bi (Level 1)  ai (Level 2)  di = bi – ai 

18.2960 18.3270 -0.0310 

18.2960 18.3110 -0.0150 

18.3110 18.3270 -0.0160 

18.2950 18.2960 -0.0010 

18.2950 18.2960 -0.0010 
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and 
n

s
tdcc d

n 1;2/21 ),(
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=
α

m  where d is the mean value of di which is - 0.0128 seconds, 

1;2/ −nt
α

 is 4;05.t which is 2.1318, sd is the standard deviation of di which is 0.0125 seconds, 

and n is the sample size which is 5. This results in the confidence interval (c1,c2) equal to 

)
5

0125.
)(1318.2(0128.0

s
s m− which is [-0.0247, -0.0009]. Since the confidence interval 

does not include zero, there is a statistically significant difference between the execution 

times of the system set at Level 1 and Level 2 with 90% confidence. Tables 5.5 through 

5.7 identify where statistically significant differences are among the Levels for Ggrep 

executed with Expressions 1 through 3 because the calculated confidence intervals do not 

include zero. Levels 1 and 2 is the difference between the baseline and the sliced versions 

of the system. Levels 1 and 3 is the difference between the baseline and the sliced version 

with 4 parallel threads. Levels 1 and 4 is the difference between the baseline and the 

sliced version with 8 parallel threads of execution. Levels 1 and 5 is the difference 

between the baseline and the sliced version with 12 threads of execution. Levels 2 and 3 

is the difference between the sliced version and when parallel execution is introduced 

with only 4 threads. Levels 2 and 4 is the difference between the sliced version and the 

sliced version with 8 parallel threads. Levels 2 and 5 is the difference between the sliced 

version and the version with 12 threads. Levels 3 and 4 is the difference between the 

system with only 4 threads of parallel execution and the version with 8 threads. Levels 3 

and 5 is the difference between the system with only 4 threads of parallel execution and 

the version with 12 threads. Levels 4 and 5 is the difference between the system with 8 

threads of parallel execution and 12 threads.  
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Table 5.5. Mean of Differences (Is there a statistically significant difference present?) 

using Ggrep Expression 1 with Optimization Off and OllyDbg 

Level Level 1 Level 2 Level 3 Level 4 Level 5 

1 (baseline) X YES YES YES NO 

2 (hidden function in use) X X YES YES NO 

3 (hidden function w/ 4 threads) X X X NO YES 

4 (hidden function w/ 8 threads) X X X X YES 

5 (hidden function w/ 12 threads) X X X X X 

 

Table 5.6. Mean of Differences (Is there a statistically significant difference present?) 

using Ggrep Expression 2 with Optimization Off and OllyDbg 

Level Level 1 Level 2 Level 3 Level 4 Level 5 

1 (baseline) X NO YES YES YES 

2 (hidden function in use) X X YES YES YES 

3 (hidden function w/ 4 threads) X X X NO NO 

4 (hidden function w/ 8 threads) X X X X NO 

5 (hidden function w/ 12 threads) X X X X X 

 

Table 5.7. Mean of Differences (Is there a statistically significant difference present?) 

using Ggrep Expression 3 with Optimization Off and OllyDbg 

Level Level 1 Level 2 Level 3 Level 4 Level 5 

1 (baseline) X YES YES YES YES 

2 (hidden function in use) X X YES YES YES 

3 (hidden function w/ 4 threads) X X X NO YES 

4 (hidden function w/ 8 threads) X X X X NO 

5 (hidden function w/ 12 threads) X X X X X 

 

There are differences among 2 of the 3 cases where a hidden function is first 

introduced in Ggrep. This occurs in the change from Level 1 to Level 2. Statistically 

significant differences occur among the execution times with all of the expressions from 

Levels 2 to 3. Once Ggrep had parallel execution introduced in Level 3, there are no 

statistically significant differences in the execution time by adding four additional threads 

of execution. In only one case is there no difference detected when going from 4 threads 

to 12 threads of execution. This was for Expression 2. The remaining expressions do have 
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a statistically significant difference in execution times. In two cases (Expression 2 and 3), 

there is not a difference when going from 8 threads to 12 threads. In only the case of 

Expression 1 is there no difference when going from the baseline to a hidden function 

with 12 threads (Level 1 to Level 5) and from a sliced program with 0 threads to one with 

12 threads (Level 2 to Level 5). A change is recognized with Expression 2 and 3 for these 

two cases. 

Looking at the interval plots (Figure 5.1 through 5.3) for each expression, these 

differences are not obvious in all of the figures. In Figure 5.1, for example, the confidence 

intervals for Levels 1 and 2 are overlapping. In fact, the lower bound for Level 2 is 

18.297 (see Table 5.1). This includes the mean of Level 1 which by visual testing means 

that there is no difference between the systems at the 90% confidence level. The 

differences are so small that when taken out to the fourth decimal place the confidence 

interval of the mean of differences does show a difference. However, rounding all the 

numbers used in the calculations to only two decimal places shows the interval including 

0, which means the systems are not statistically different. The statistically significant 

difference between Levels 2 and 3 in the system is easy to see visually.  

There appears to be a noticeable change in behavior when going from 8 parallel 

threads to 12 threads. This change is due thread overhead for the particular test expression 

being used. Although the increase appears large in Figure 5.1, it is important to keep the 

scale in mind. There is only an increase of .112 seconds. The other two expressions do 

not have this apparent jump.   
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Figure 5.1. Mean Interval Plot of Ggrep Expression 1 with Optimization Off and OllyDbg 

 

Figure 5.2 matches nicely with the statistically significant differences in the 

execution times of the Ggrep expression 2 in Table 5.7. A simple visual test of the 

confidence intervals for Levels 1 and 2 shows that they do intersect, meaning there is not 

a difference between the systems. The same simple test also shows the difference between 

Levels 2 and 3. There is no difference in the change from Level 3 to Level 4, since the 

upper bound of the confidence interval for Level 4 is 5.3738 seconds (cf., Table 5.2), thus 

the interval includes 5.372, the mean of Level 3. The system at Levels 4 and 5 has the 

same mean and confidence intervals. 

The change displayed in Figure 5.3 between Levels 3 and 4 seems small and 

consistent with the fact that there is not a statistically significant difference between these 

two levels. The lower bound of Level 3 is 217.26 (cf., Table 5.3). The confidence interval 

does not include the mean of Level 4, 217.223 seconds. A t-test must be performed to 

determine if there is a difference, since only the intervals are overlapping. The t-test 
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results in t equal to 2.19. This is larger than its critical value, causing the null hypothesis 

that the systems are the same to be rejected. This does not correspond with Table 5.6 

where the confidence interval of mean of differences identified a difference, since zero 

was included in the interval. However, if the number of decimal places used in the 

calculation is decreased to 2 the interval does start at zero. It is easy to see that the system 

has the same behavior at Levels 4 and 5, where there is a small change. This change, 

though, is just enough to cause a difference while going from Level 3 to 5. The upper 

bound for Level 5 is 217.30. This means that neither of the intervals include the other 

level’s mean value, so visually it is non conclusive whether the systems are the same or 

not and one must rely on the mean of differences calculations or a t-test. The resulting t-

value is 2.48, rejecting the null hypothesis that they are the same systems. The confidence 

interval for the mean of differences also identified that there is a difference between the 

systems.  
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Figure 5.2. Mean Interval Plot of Ggrep Expression 2 with Optimization Off and OllyDbg 
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Figure 5.3. Mean Interval Plot of Ggrep Expression 3 with Optimization Off and OllyDbg 

 

 Although statistically significant differences are present in the system, practically 

there is not much of a difference at all. The user of the system would be minimally 

impacted by differences. The ranges for the levels are .112 seconds for Expression 1, 

.0722 seconds for Expression 2, and 2.05 seconds for Expression 3. The ideal level for all 

expressions tested with Ggrep is Level 4. It is possible to introduce 8 threads of execution 

for the same cost of only 4. 

Models were built for all three expressions used with Ggrep, however, the 

predictive power was extremely weak. Figures A.1 – A.3 in the appendix show the 

regression equations for Ggrep Expression 1 through 3 respectively. R-Squared values of 

0 for Expression 1, .408 for Expression 2 and .828 for Expression 3 are all weak. This 

causes the models to be unreliable. The 4-in-1 plots for each of the expressions are very 

similar to the one for Ggrep Expression 1 shown in Figure 5.4. The two additional 4-in-1 

plots are Figures A.4 and A.5 of the appendix. There are distinct levels present in each of 
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their Residual versus Fitted Values graphs. This means the standard deviations are 

correlated to the Levels. The errors are not independent as can be seen in the Residual 

versus Order Plots. The Histogram of Residuals and the Probability Plots show the errors 

are not normally distributed.  
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Figure 5.4. 4-in-1 Plot for Ggrep Expression 1 with OllyDbg and Optimization Off, 

Levels 1-5 

5.2.2 Ggrep Analysis, OllyDbg, Optimization-On  

Once optimization is turned on for Ggrep, the mean execution times between 

levels for each expression is even closer as seen in Tables 5.8 - 5.10. Furthermore, it is 

necessary to validate that the optimization on versions have not removed the parallel 

threads. Validation is accomplished by inspecting the output and viewing the number 

threads via the task manager. The insertion of print statements to identify the separate 

threads of execution at Levels 3-5 could cause a change in the compilers decision on what 
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to optimize. Verification with OllyDbg [Oll05] does show that the correct number of 

threads are indeed spawned.  

Table 5.8. Ggrep Expression 1 with Optimization On and OllyDbg, Levels 1-5 

Level Mean St-Dev 

90% Confidence 

Interval 

1 (baseline) 16.108 0.076 [16.035, 16.180] 

2 (hidden function in use) 16.209 0.093 [16.120, 16.297] 

3 (hidden function w/ 4 threads) 16.174 0.051 [16.125, 16.223] 

4 (hidden function w/ 8 threads) 16.159 0.082 [16.081, 16.238] 

5 (hidden function w/ 12 threads) 16.15 0.029 [16.122, 16.178] 

 

Table 5.9. Ggrep Expression 2 with Optimization On and OllyDbg, Levels 1-5 

Level Mean St-Dev 

90% Confidence 

Interval 

1 (baseline) 4.7376 0.0069 [4.7310, 4.7442] 

2 (hidden function in use) 4.747 0.0067 [4.7406, 4.7534] 

3 (hidden function w/ 4 threads) 4.750 0.000 [4.750, 4.750] 

4 (hidden function w/ 8 threads) 4.753 0.0067 [4.7466, 4.7594] 

5 (hidden function w/ 12 threads) 4.750 0.000 [4.750, 4.750] 

 

Table 5.10. Ggrep Expression 3 with Optimization On and OllyDbg, Levels 1-5 

Level Mean St-Dev 

90% Confidence 

Interval 

1 (baseline) 193.4 0.24 [193.17, 193.62] 

2 (hidden function in use) 194.44 0.06 [194.38, 194.49] 

3 (hidden function w/ 4 threads) 194.69 0.17 [194.54, 194.85] 

4 (hidden function w/ 8 threads) 194.62 0.12 [194.51, 194.73] 

5 (hidden function w/ 12 threads) 194.63 0.1 [194.53, 194.73] 

 

To determine if there are any statistically significant differences among the 

execution times, a confidence interval for the mean of differences is calculated between 

each level as accomplished when optimization was turned off. Tables 5.11-5.13 show 

where the statistically significant differences for the execution times are present in the 

systems based on the exclusion of zero from the calculated confidence interval. 



 

61 

Expression 1 results in no statistically significant differences present between any of the 

levels. Expression 2 results in there only being differences when going from the baseline 

to every other level. There are not statistically significant differences present in the 

remaining levels. Expression 3 results in there being differences present when going from 

all levels to another, except from a level with parallel threads to another level with 

parallel threads. 

Table 5.11. Mean of Differences (Is there a statistically significant difference present?) 

using Ggrep Expression 1 with Optimization On and OllyDbg 

Level Level 1 Level 2 Level 3 Level 4 Level 5 

1 (baseline) X NO NO NO NO 

2 (hidden function in use) X X NO NO NO 

3 (hidden function w/ 4 threads) X X X NO NO 

4 (hidden function w/ 8 threads) X X X X NO 

5 (hidden function w/ 12 threads) X X X X X 

 

Table 5.12. Mean of Differences (Is there a statistically significant difference present?) 

using Ggrep Expression 2 with Optimization On and OllyDbg 

Level Level 1 Level 2 Level 3 Level 4 Level 5 

1 (baseline) X YES YES YES YES 

2 (hidden function in use) X X NO NO NO 

3 (hidden function w/ 4 threads) X X X NO NO 

4 (hidden function w/ 8 threads) X X X X NO 

5 (hidden function w/ 12 threads) X X X X X 

 

Table 5.13. Mean of Differences (Is there a statistically significant difference present?) 

using Ggrep Expression 3 with Optimization On and OllyDbg 

Level Level 1 Level 2 Level 3 Level 4 Level 5 

1 (baseline) X YES YES YES YES 

2 (hidden function in use) X X YES YES YES 

3 (hidden function w/ 4 threads) X X X NO NO 

4 (hidden function w/ 8 threads) X X X X NO 

5 (hidden function w/ 12 threads) X X X X X 
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Looking at the interval plots (Figures 5.5 through 5.7) for each expression, these 

differences are not obvious to see. The user of the system would find it difficult to notice 

a difference in performance. It is easy to see there is no difference present in the Levels 2 

through 5 of Ggrep with Expression 1 as shown in Figure 5.5. The most difficult case to 

determine that a statistically significant difference is not present is in the change from 

Level 1 to Level 2. The confidence intervals overlap, but neither of the others mean 

execution time is included in the others confidence interval. A t-test is required to 

determine for certain. It results in a t-value of 1.25, therefore the systems are the same. 
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Figure 5.5. Mean Interval Plot of Ggrep Expression 1 with Optimization On and OllyDbg 

 

As with Ggrep Expression 1, the most difficult case to visually distinguish if a 

difference is present in Ggrep Expression 2 or not is with the change from Level 1 to 

Level 2. As shown in Figure 5.6, the confidence intervals are overlapping, but the mean 

of neither level is included by the others confidence interval. This leaves distinguishing 

the difference to the mean of differences calculation or a t-test, which both show a 

statistically significant difference. The resulting t-value is -2.18, therefore the null 
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hypothesis does not hold true and there is a difference. Ggrep Expression 2 resulted in the 

same sample, 4.75 seconds for every repetition of tests at Levels 4 and 5 when Ggrep was 

executed with optimization on. This causes the confidence intervals for both to be zero, 

as can be seen in Figure 5.7.  
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Figure 5.6. Mean Interval Plot of Ggrep Expression 2 with Optimization On and OllyDbg 

 

In the case of Ggrep Expression 3, it is easy to visually distinguish where 

differences are present in the system (see Figure 5.7). The hardest to see is the change 

from Level 2 to 3, where the confidence intervals for the execution times come very 

close, however they do not overlap.  

Similar to Ggrep with optimization off, the creation of a model is not of value. 

The regression models for all three expressions of Ggrep with optimization on and all 5 

Levels are extremely weak according to their R-Squared values of 0, .35, and .53 

respectively (see Figures A.6 through A.8). 
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Figure 5.7. Mean Interval Plot of Ggrep Expression 3 with Optimization On and OllyDbg 

  

The 4-in-1 plots have the same properties as Ggrep with optimization on with the 

exception of Ggrep Expression 2 where the errors have a greater dependence on the level 

as seen in the Residuals versus Order of the Data plot of Figure 5.8. The 4-in-1 plots of 

Expressions 1 and 3 are located in the appendix as Figures A.9 and A.10. 
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Figure 5.8. 4-in-1 Plot for Ggrep Expression 2 with OllyDbg and Optimization On, 

Levels 1-5 
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5.2.3 Ggrep Analysis, OllyDbg, Optimization-Off Versus Optimization-On 

 Comparing Ggrep with optimization turned off with the version with optimization 

turned on, the confidence intervals for the mean of differences between the execution 

times at each level are calculated. There are statistically significant differences between 

the systems at every level. These differences are easily distinguishable in the combined 

Interval plots of Ggrep expressions 1 through 3 as shown in Figures 5.9 through 5.11. The 

highest change in execution time takes place at Level 1 of Expression 3 where an increase 

of 25.85 seconds is observed (see Table 5.14). 

Table 5.14. Change in Execution Time (s) of Ggrep between Optimization Off and 

Optimization On, OllyDbg and Levels 1-5 

Level Expression 1 Expression 2 Expression 3 

1 (baseline) -2.191 -0.669 -25.85 

2 (hidden function in use) -2.102 -0.691 -23.82 

3 (hidden function w/ 4 threads) -2.032 -0.622 -22.81 

4 (hidden function w/ 8 threads) -2.046 -0.6128 -22.6 

5 (hidden function w/ 12 threads) -2.167 -0.6158 -22.57 
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Figure 5.9. Mean Interval Plot of Ggrep Expression 1 with OllyDbg and Optimization On 

versus Optimization Off 
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Figure 5.10. Mean Interval Plot of Ggrep Expression 2 with OllyDbg and Optimization 

On versus Optimization Off 
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Figure 5.11. Mean Interval Plot of Ggrep Expression 3 with OllyDbg and Optimization 

On versus Optimization Off 

 

When comparing the file sizes of the executables at each level (see Table 5.11), 

all of the files decrease in size. Validation has already shown that the threads remain 

present for Ggrep when optimization is turned on. This decrease in file size, therefore, is 

not due to the compiler removing the parallel threads. 
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Table 5.15. Ggrep Executable Size with Optimization Off and On with OllyDbg 

Level 

Ggrep File Size 

Opt-Off (bytes) 

Ggrep File Size 

Opt-On (bytes) 

1 (baseline) 749568.000 622592.000 

2 (hidden function in use) 778240.000 647168.000 

3 (hidden function w/ 4 threads) 765952.000 634880.000 

4 (hidden function w/ 8 threads) 765952.000 634880.000 

5 (hidden function w/ 12 threads) 765952.000 634880.000 

5.3 SciMark2 Analysis 

5.3.1 SciMark2 Analysis, OllyDbg, Optimization-Off  

 Tables 5.16 through 5.20 present the mean execution time (in seconds), standard 

deviation, and a 90% confidence interval of SciMark2 with OllyDbg and Optimization 

turned off. Five samples are collected at each level. In the baseline version of FFT (Level 

1) and the sliced versions with zero threads (Level 2) of LU and SOR, the samples 

collected within each program were the same causing their standard deviations to be zero. 

The host system has not introduced enough random delays to cause some variation. 

 

Table 5.16. FFT with Optimization Off and OllyDbg, Levels 1-5 

Level Mean St-Dev 

90% Confidence 

Interval 

1 (baseline)  2.765  0.0000 [2.765, 2.765]  

2 (hidden function in use) 9.757 0.0067 [9.7506, 9.7634] 

3 (hidden function w/ 4 threads) 15456 1749 [13788, 17123] 

4 (hidden function w/ 8 threads) 26159 726 [25466, 26851] 

5 (hidden function w/ 12 threads) 38102 698 [37437, 38768] 

 

Table 5.17. LU with Optimization Off and OllyDbg, Levels 1-5 

Level Mean St-Dev 90% Confidence Interval 

1 (baseline) 5.4098 0.0068 [5.4033, 5.4163] 

2 (hidden function in use)  5.8280 0.0000 [5.8280, 5.8280] 

3 (hidden function w/ 4 threads) 376.12 44.34 [333.85, 418.39] 

4 (hidden function w/ 8 threads) 633.3 19.03 [615.16, 651.45] 

5 (hidden function w/ 12 threads) 918.49 15.71 [903.51, 933.47] 
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Table 5.18. Monte with Optimization Off and OllyDbg, Levels 1-5 

Level Mean St-Dev 90% Confidence Interval 

1 (baseline) 4.5968 0.0068 [4.5903, 4.6033] 

2 (hidden function in use) 5.8908 0.0004 [5.8904, 5.8912] 

3 (hidden function w/ 4 threads) 1748.8 208.9 [1549.6, 1948.0] 

4 (hidden function w/ 8 threads) 2951.6 100.8 [2855.4, 3047.7] 

5 (hidden function w/ 12 threads) 4324.3 55.9 [4271.0, 4377.6] 
 

Table 5.19. SOR with Optimization Off and OllyDbg, Levels 1-5 

Level Mean St-Dev 90% Confidence Interval 

1 (baseline) 4.7472 0.0129 [4.7349, 4.7595] 

2 (hidden function in use) 6.453  0 [6.453, 6.4530] 

3 (hidden function w/ 4 threads) 12969 201 [12778, 13161] 

4 (hidden function w/ 8 threads) 25460 276 [25197, 25723] 

5 (hidden function w/ 12 threads) 36131 203 [35937, 36325] 
 

Table 5.20. Sparse with Optimization Off and OllyDbg, Levels 1-5 

Level Mean St-Dev 90% Confidence Interval 

1 (baseline) 5.6092 0.0004 [5.6088, 5.6096] 

2 (hidden function in use) 13.541 0.083 [13.462, 13.620] 

3 (hidden function w/ 4 threads) 25909 3062 [22989, 28829] 

4 (hidden function w/ 8 threads) 44086 1468 [42686, 45485] 

5 (hidden function w/ 12 threads) 64337 1006 [63378, 65295] 

 

Looking at the interval plot for the execution times of the FFT function of 

SciMark2, there are differences in the system between Levels 2 through 5 as shown in 

Figure 5.12. This is also true for the other four functions of SciMark2 and can be seen in 

the appendix at Figures A.11 through A.14. There is a drastic difference in the required 

amount of time for the function to complete execution between Level 2 and Level 3. This 

difference corresponds to when 4 parallel threads are introduced to the system. The means 

continue to increase with the addition of 4 and 8 threads in Levels 4 and 5. 
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Figure 5.12. Mean Interval Plot of FFT with OllyDbg and Optimization Off 

 

 Differences are visible between every level of FFT. To ensure the confidence 

intervals of Levels 1 and 2 are not intersecting, Figure 5.13 shows only the first two levels 

for the FFT function of SciMark2. It is very clear that the two levels are different. This is 

true for the other four functions and can be seen in the appendix at Figures A.15 through 

A.18. It is not necessary to determine the confidence intervals using the mean of 

differences of the execution times for comparing any of the levels. 

Determining why there is such an extreme change from Level 2 to Level 3 

requires examining the mean execution times, the number of calls made to the hidden 

function, and the number of threads in use. Table 5.21 shows an analysis of the average 

cost per call per thread. The overall average is 8.2855 x 10
-6 
seconds for each thread 

associated with a call to the hidden function of the five SciMark2 functions examined. 

This adds up quickly with millions of calls made to each function. 
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Figure 5.13. Mean Interval Plot of FFT with OllyDbg and Optimization Off Levels 1-2 

 

 

  Table 5.21. Cost Analysis for Threads, Levels 3-5 

Level 

Num 

Threads Function Mean 

Calls to 

Hidden 

Function 

Time per 

Call 

(Mean/Call) 

Time per 

Call/Num 

Threads 

3 4 FFT 15456 444542000 3.47684E-05 8.6921E-06 

4 8 FFT 26159 444542000 5.88448E-05 7.3556E-06 

5 12 FFT 38102 444542000 8.57107E-05 7.1426E-06 

3 4 LU 376.12 10700000 3.51514E-05 8.7879E-06 

4 8 LU 633.3 10700000 5.91869E-05 7.3984E-06 

5 12 LU 918.49 10700000 8.58402E-05 7.1533E-06 

3 4 Monte 1748.8 50005000 3.49725E-05 8.7431E-06 

4 8 Monte 2951.6 50005000 5.90261E-05 7.3783E-06 

5 12 Monte 4324.3 50005000 8.64774E-05 7.2064E-06 

3 4 SOR 12969 301974751 4.29473E-05 1.0737E-05 

4 8 SOR 25460 301974751 8.43117E-05 1.0539E-05 

5 12 SOR 36131 301974751 0.000119649 9.9708E-06 

3 4 Sparse 25909 748500000 3.46146E-05 8.6536E-06 

4 8 Sparse 44086 748500000 5.88991E-05 7.3624E-06 

5 12 Sparse 64337 748500000 8.59546E-05 7.1629E-06 
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 Attempting to create a model for the system for FFT of SciMark2, an R-squared 

value of .944 is shown in Figure 5.14. However, this alone is not enough to have a good 

model. One of the assumptions for a valid model is that the errors are normally 

distributed. It can be seen in the Histogram of Residuals and the Normal Probability plots 

of the 4-in-1 Plot for FFT in Figure 5.15 that the errors are not normally distributed. Also, 

the Residual versus the Order of the Data shows dependence at Levels 1 and 2. The 

Residuals versus the fitted values shows grouping among the levels in the standard 

deviation. These properties also hold for the LU, Monte, SOR, and Sparse functions of 

SciMark2. Their corresponding regression models and 4-in-1 plots are located in the 

appendix at Figures A.19-A.26.  

 

Figure 5.14. Regression Model of FFT with OllyDbg and Optimization Off, Levels 1-5 

5.3.2 SciMark2 Analysis, OllyDbg, Optimization-On 

Tables 5.22 through 5.26 contain the mean execution time (in seconds), standard 

deviation, and a 90% confidence interval of SciMark2 with OllyDbg and Optimization 

turned on. Five samples are collected at each level. Levels 3 through 5 for the Monte 

function of SciMark2 fail to execute. This is the same exact code used with the 

optimization off data sets, which did execute and validate successfully, but in this case 

The regression equation is 
FFT Execution Time (s) = - 14759 + 10235 Level 
 
Predictor     Coef  SE Coef      T      P 
Constant    -14759     1685  -8.76  0.000 
Level      10234.8    507.9  20.15  0.000 
 
S = 3591.64   R-Sq = 94.6%   R-Sq(adj) = 94.4% 
 
Analysis of Variance 
 
Source          DF          SS          MS       F      P 
Regression       1  5237554341  5237554341  406.01  0.000 
Residual Error  23   296697964    12899911 
Total           24  5534252305 
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the compiler has removed something necessary for the function to operate correctly. 

Using OllyDbg to validate that the parallel threads remain for SciMark2 when 

optimization is turned on reveals that the compiler has completely removed them from 

Levels 3 through 5. 
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Figure 5.15. 4-in-1 Plot of FFT with OllyDbg and Optimization Off, Levels 1-5 

 

Table 5.22. FFT with Optimization On and OllyDbg, Levels 1-5 

Level Mean St-Dev 

90% Confidence 

Interval 

1 (baseline) 3.9242 0.0072 [3.9174, 3.9310] 

2 (hidden function in use) 10.081 0.06 [10.023, 10.138] 

3 (hidden function w/ 4 threads) 69.472 0.026 [69.447, 69.496] 

4 (hidden function w/ 8 threads) 69.457 0.078 [69.383, 69.531] 

5 (hidden function w/ 12 threads) 69.5 0.08 [69.424, 69.576] 
 

Table 5.23. LU with Optimization On and OllyDbg, Levels 1-5 

Level Mean St-Dev 

90% Confidence 

Interval 

1 (baseline) 5.0032 0.0072 [4.9964, 5.0100] 

2 (hidden function in use) 5.4252 0.0072 [5.4184, 5.4320] 

3 (hidden function w/ 4 threads) 10.344 0.058 [10.288, 10.399] 

4 (hidden function w/ 8 threads) 10.316 0.023 [10.293, 10.338] 

5 (hidden function w/ 12 threads) 10.3 0.017 [10.284, 10.316] 
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Table 5.24. Monte with Optimization On and OllyDbg, Levels 1-5 

Level Mean St-Dev 

90% Confidence 

Interval 

1 (baseline) 4.5756 0.0071 [4.5689, 4.5823] 

2 (hidden function in use) 4.8092 0.0068 [4.8027, 4.8157] 

3 (hidden function w/ 4 threads) N/A N/A N/A 

4 (hidden function w/ 8 threads) N/A N/A N/A 

5 (hidden function w/ 12 threads) N/A N/A N/A 
 

Table 5.25. SOR with Optimization On and OllyDbg, Levels 1-5 

Level Mean St-Dev 

90% Confidence 

Interval 

1 (baseline) 4.7438 0.0085 [4.7357, 4.7519] 

2 (hidden function in use) 7.2314 0.0069 [7.2248, 7.2380] 

3 (hidden function w/ 4 threads) 20.628 1 [19.674, 21.581] 

4 (hidden function w/ 8 threads) 19.818 1.116 [18.754, 20.882] 

5 (hidden function w/ 12 threads) 20.29 2.097 [18.291, 22.289] 

 

Table 5.26. Sparse with Optimization On and OllyDbg, Levels 1-5 

Level Mean St-Dev 

90% Confidence 

Interval 

1 (baseline) 5.6058 0.0134 [5.5930, 5.6186] 

2 (hidden function in use) 13.291 0.008 [13.283, 13.299] 

3 (hidden function w/ 4 threads) 47.897 0.039 [47.860, 47.935] 

4 (hidden function w/ 8 threads) 47.903 0.064 [47.842, 47.964] 

5 (hidden function w/ 12 threads) 47.882 0.021 [47.861, 47.902] 
 

 Although the parallel threads have been removed, the interval plots of each of the 

programs are examined for the sake of completeness. In Figure 5.16 there are evident 

differences between Levels 1-2 and Levels 2-3 for FFT. This holds true for the other four 

functions of SciMark2 and can be seen the appendix at Figures A.27 through A.30. It is 

difficult, however, to determine if differences are present between Levels 3 through 5 in 

all of the functions except for Monte which does not have Levels 3 through 5 present. 

Confidence intervals of the mean of differences in the execution times among the three 

levels are calculated for each of the four functions. These confidence intervals reveal a 
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single statistically significant difference between the execution times at Levels 4 and 5 of 

FFT. 
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Figure 5.16. Mean Interval Plot of FFT with OllyDbg and Optimization On Levels 1-5 

 

Models were also attempted for FFT. However, as with SciMark2 with 

optimization off the models for SciMark2 with optimization on are not valid because of 

the properties of the errors present. Figure 5.17 shows the regression model with an R-

squared value of .762 for FFT with optimization on.  

 

Figure 5.17. Regression Model of FFT with OllyDbg and Optimization On, Levels 1-5 

The regression equation is 
FFT (Execution Time) = - 12.7 + 19.1 Level 
 
Predictor     Coef  SE Coef      T      P 
Constant   -12.672    7.162  -1.77  0.090 
Level       19.053    2.159   8.82  0.000 
 
S = 15.2689   R-Sq = 77.2%   R-Sq(adj) = 76.2% 
 
Analysis of Variance 
 
Source          DF     SS     MS      F      P 
Regression       1  18150  18150  77.85  0.000 
Residual Error  23   5362    233 
Total           24  23513 
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The 4-in-1 plot for FFT of SciMark2 with optimization on is contained in Figure 

5.18. The Residuals versus the Order of Data plot for FFT shows that the errors are 

dependent on the level. Its Residual versus Fitted Values plot clearly distinguishes the 

five separate levels. The Normal Probability and the Histogram of the Residuals plots of 

do not show a normal distribution for the errors. These do not support a valid model.   

These same properties are present in the remaining four functions of SciMark2 

with optimization on. The regression models and the associated 4-in-1 plots are Figures 

A.31 through A.38 of the appendix. 
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Figure 5.18. 4-in-1 Plot of FFT with OllyDbg and Optimization On, Levels 1-5 

 

 

5.3.3 SciMark2 Analysis, OllyDbg, Optimization-Off Versus Optimization-On 

Comparing the two different versions of SciMark2 is limited to just Levels 1 and 

2 since the compiler removed the parallel threads of Levels 3 through 5 with optimization 

on. Figure 5.19 shows the confidence intervals for Monte with optimization on and off. 
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The most difficult level to determine whether a difference is present in the execution time 

is the baseline version, Level 1. This was not true for FFT and LU where the differences 

between the levels are easily distinguishable (see Figures A.39 and A.40 of the appendix). 

However, it is true for SOR and Sparse (see Figures A.41 and A.42). A confidence 

interval of the mean of differences is calculated to determine if there are statistically 

significant differences between the Level 1 versions of Monte, SOR, and Sparse. The 

confidence intervals reveal that the SOR and Sparse functions are statistically equivalent 

with optimization on and off. There is a difference in the Monte function.  
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Figure 5.19. Mean Interval Plot of Monte with Optimization On and Off with OllyDbg, 

Levels 1-2 

 

 Comparing the file sizes for the version with optimization off and on shows a 

decrease at every level. This is the same as Ggrep. Table 5.27 shows the executable file 

sizes in bytes. 
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Table 5.27. File Sizes for SciMark2 with Optimization On and Off with OllyDbg 

Level 

SciMark2 File 

Size Opt-Off 

(bytes) 

SciMark2 File 

Size Opt-On 

(bytes) 

1 (baseline) 53248 24576 

2 (hidden function in use) 65536 36352 

3 (hidden function w/ 4 threads) 69632 38400 

4 (hidden function w/ 8 threads) 69632 38400 

5 (hidden function w/ 12 threads) 69632 38400 

  

5.4 Disassembly with OllyDbg and IDAPro  

 Relying on the experimental assumption that each of the hidden functions execute 

in a secure area prevents debuggers from disassembling the hidden functions themselves. 

This would essentially be equivalent to removing the hidden functions entirely from the 

executable and attempting to disassemble them with a debugger. The lack of the hidden 

function would cause application failure.  

Setting this assumption aside and analyzing the system at the levels containing 

parallel threads is extremely worthwhile. Table 5.28 summarizes when disassembly fails 

in the system. Recall that SciMark2 with optimization on has no parallel threads due to 

compiler actions. Therefore, it is not present in the table.  

Disassembly of Levels 3 through 5 for Ggrep with optimization on and off is 

possible with both OllyDbg and IDAPro debuggers. Both debuggers are capable of 

disassembling and executing Ggrep with all three expressions without error. However, 

when break points are set in an attempt to determine the functionality of the separate 

threads, both debuggers have problems stepping through the additional threads.  
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Table 5.28. Disassembly Results, Levels 3 through 5 

 Is OllyDbg 

capable of 

Executing? 

Is OllyDbg 

capable of 

Executing with 

break point set? 

Is IDAPro 

capable of 

Executing? 

Is IDAPro 

capable of 

Executing with 

break point set? 

Ggrep Exp1 

Optimization Off 

Yes No Yes No 

Ggrep Exp1 

Optimization On 

Yes No Yes No 

Ggrep Exp2 

Optimization Off 

Yes No Yes No 

Ggrep Exp2 

Optimization On 

Yes No Yes No 

Ggrep Exp3 

Optimization Off 

Yes No Yes No 

Ggrep Exp3 

Optimization On 

Yes No Yes No 

SciMark2 

Optimization Off 

Yes No Yes No 

 

With OllyDbg, problems occur after executing the target thread until it completes 

and enters a sleep state. It remains active with the other threads in a paused state. At this 

point it is necessary to pause the target thread, since it is in a locked state. This leaves all 

the threads in a paused state. After giving control back to the main thread and continuing 

to attempt debugging, an access violation is encounter when returning back to one of the 

additional threads. This behavior is not present during normal execution. 

With IDAPro, a similar problem occurs leaving the program with warnings of 

memory write problems. The break point is set at address 0040390F in the case of both 

debuggers. 

Disassembly of Levels 3 through 5 for SciMark2 with optimization off using 

OllyDbg leads to access violations. This occurs with and without a breakpoint set at 

0040181A. When using IDAPro, SciMark2 executes correctly without a break point set. 
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When the break point is set, the same problems occur that were present when Ggrep is 

attempted to be executed.  

These problems combined with the presence of multiple parallel threads make it 

difficult for an attacker to track down the correct flow of execution. Stepping through the 

execution is normal until the threads are started. This can be a deterrent, as the resources 

required to determine the functionality increase with the number of threads.   

5.5 Summary 

 This chapter analyzes the Ggrep and SciMark2 systems. Ggrep’s performance 

with optimization off and optimization on are similar. Although there are statistically 

significant differences at every level, a user would be minimally impacted by the 

difference in execution times. SciMark2 is statistically different at every level except for 

two functions (SOR, Sparse) at the baseline level. There is a drastic cost associated with 

implementing parallel threads with SciMark2 when optimization is off. Execution of each 

thread averages 8.2855 x 10
-6 
seconds. This hinders performance when the number of 

function calls in SciMark2 are in the millions. The compiler removes the parallel threads 

from SciMark2 when optimization is turned on. Both debuggers experience problems 

when disassembling both Ggrep and SciMark2 when parallel threads are present. 
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VI. Conclusions and Recommendations 

6.1 Chapter Overview 

 This chapter presents the conclusions and the contributions of this research. It 

concludes with recommendations for further areas of study which include parallel thread 

execution. 

6.2 Conclusions of Research 

 This research proves that the inclusion of parallel threads with the concept of 

program slicing [ZhG03] with a hidden function is a viable means of software security. 

The cost of parallel threads should, however, be considered if calls to the hidden function 

become extremely large as in the case of SciMark2. If the number of calls remain 

relatively few, there will be no statistically significant difference between the baseline of 

an application and the inclusion of twelve threads of parallel execution. Ggrep with 

Expression 1 and optimization turned on demonstrates this. 

 The use of parallel threads alone makes disassembly with a debugger more 

difficult. In some cases, the debugger may experience problems as when break points are 

introduced in both Ggrep and SciMark2. 

Compiler optimizations can remove parallel threads during the compilation 

process as seen in the SciMark2 system. However, this is not always the case since the 

threads remained when optimization is turned on for Ggrep. 

 In both Ggrep and SciMark2, increasing the number of threads present in an 

application did not increase the executable size stored on disk. However, while the 
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increase from four to eight and eight to twelve threads has no impact on file size, there is 

an increase when introducing threading to single threaded applications. 

6.3 Research Contributions 

 Software security should take advantage of multi-processor technology supported 

by most computers. This research uses multi-threading with OpenMP and combines two 

previously proven concepts. The first being the use of hiding program slices for security 

[ZhG03], while the second is using parallel threads as a means of obfuscation [CTL97]. 

This research executes parallel threads from within a hidden function and proves it as a 

viable option. It is possible to easily introduce multiple false paths of execution which 

can perform similar or non-related work to mislead an attacker from the true functionality 

of the program. 

There is a limitation associated with the use of threads for security. The added 

execution time associated with each thread adds up quickly if a large number of calls to 

the hidden function are made. 

Even so, this technique for software security can be directly applied to 

applications developed for and by the Air Force.  

6.4 Recommendations for Future Research 

Since the demand for speed and performance are driving most computers to 

include multi-processors, using parallel threads for security warrants further examination. 

Some additional research topics are proposed below.   

Implement this concept on a secure device. Instead of simulating the secure device 

as in this research, implementation should be done on a real device. Although it may be 
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possible to execute an entire application in a secure area, resource restrictions will likely 

not permit this. 

Implement a security thread to detect any modifications. This thread could run 

continually to check for modifications to the application. Upon detection, it could stop the 

application from executing. This concept could also be implemented to detect the 

presence of a debugger on a system. 

Implement parallel threads which continuously check one another. If a thread 

realizes another thread has stopped, as is the case when attempting to disassemble with a 

debugger, the application could be stopped.  

Parallel threads with metamorphic code. The concept of metamorphic code 

[Dub06] along with parallel threads of execution has strong potential for security. 

6.5 Summary 

 The implementation of security through the use of parallel threads being executed 

from a secure hidden function has both strengths and weaknesses. The concept is proven 

possible, but is limited due to the cost associated with the use of threads. Care must be 

taken to ensure parallel threads are not removed by a compiler if optimization is used. 
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Appendix 

 

 

Figure A.1. Regression Model for Ggrep Expression 1 with OllyDbg and Optimization 

Off, Levels 1-5 

 

 

Figure A.2. Regression Model for Ggrep Expression 2 with OllyDbg and Optimization 

Off, Levels 1-5 

 

The regression equation is 
Ggrep Exp  2 (Execution Time) = 5.44 - 0.0154 Level 
 
Predictor       Coef   SE Coef       T      P 
Constant     5.43578   0.01219  445.90  0.000 
Level      -0.015380  0.003676   -4.18  0.000 
 
S = 0.0259904   R-Sq = 43.2%   R-Sq(adj) = 40.8% 
 
Analysis of Variance 
 
Source          DF        SS        MS      F      P 
Regression       1  0.011827  0.011827  17.51  0.000 
Residual Error  23  0.015537  0.000676 
Total           24  0.027364 
 
Unusual Observations 
 
             Ggrep Exp 
                     2 
            (Execution 
Obs  Level       Time)      Fit   SE Fit  Residual  St Resid 
  8   2.00     5.50000  5.40502  0.00637   0.09498      3.77R 
 
R denotes an observation with a large standardized residual. 

 

The regression equation is 
Ggrep Exp 1 Execution Time (s) = 18.3 - 0.00708 Level 
 
Predictor       Coef   SE Coef       T      P 
Constant     18.2887    0.0259  706.90  0.000 
Level      -0.007080  0.007801   -0.91  0.373 
 
S = 0.0551590   R-Sq = 3.5%   R-Sq(adj) = 0.0% 
 
 
Analysis of Variance 
 
Source          DF        SS        MS     F      P 
Regression       1  0.002506  0.002506  0.82  0.373 
Residual Error  23  0.069978  0.003043 
Total           24  0.072484 
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Figure A.3. Regression Model for Ggrep Expression 3 with OllyDbg and Optimization 

Off, Levels 1-5 
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Figure A.4. 4-in-1 Plot for Ggrep Expression 2 with OllyDbg and Optimization Off, 

Levels 1-5 

 

The regression equation is 
Ggrep Exp  3 (Execution Time) = 219 - 0.515 Level 
 
Predictor      Coef  SE Coef        T      P 
Constant    219.432    0.158  1386.52  0.000 
Level      -0.51544  0.04772   -10.80  0.000 
 
S = 0.337415   R-Sq = 83.5%   R-Sq(adj) = 82.8% 
 
Analysis of Variance 
 
Source          DF      SS      MS       F      P 
Regression       1  13.284  13.284  116.68  0.000 
Residual Error  23   2.619   0.114 
Total           24  15.902 
 
Unusual Observations 
 
             Ggrep Exp 
                     3 
            (Execution 
Obs  Level       Time)      Fit  SE Fit  Residual  St Resid 
 15   3.00     217.172  217.886   0.067    -0.714     -2.16R 
 
R denotes an observation with a large standardized residual. 
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Figure A.5. 4-in-1 Plot for Ggrep Expression 3 with OllyDbg and Optimization Off, 

Levels 1-5 

 

 

 

Figure A.6. Regression Model for Ggrep Expression 1 with OllyDbg and Optimization 

On, Levels 1-5 

 

The regression equation is 
Ggrep Exp 1 (Execution Time) = 16.1 + 0.0035 Level 
 
Predictor     Coef  SE Coef       T      P 
Constant   16.1495   0.0346  467.38  0.000 
Level      0.00346  0.01042    0.33  0.743 
 
S = 0.0736685   R-Sq = 0.5%   R-Sq(adj) = 0.0% 
 
Analysis of Variance 
 
Source          DF        SS        MS     F      P 
Regression       1  0.000599  0.000599  0.11  0.743 
Residual Error  23  0.124822  0.005427 
Total           24  0.125421 
 
Unusual Observations 
 
             Ggrep Exp 
                     1 
            (Execution 
Obs  Level       Time)      Fit  SE Fit  Residual  St Resid 
  9   2.00     16.3680  16.1564  0.0180    0.2116      2.96R 
 
R denotes an observation with a large standardized residual. 
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Figure A.7. Regression Model for Ggrep Expression 2 with OllyDbg and Optimization 

On, Levels 1-5 

 

 

Figure A.8. Regression Model for Ggrep Expression 3 with OllyDbg and Optimization 

On, Levels 1-5 

 

The regression equation is 
Ggrep Exp  3 (Execution Time) = 194 + 0.264 Level 
 
Predictor     Coef  SE Coef        T      P 
Constant   193.563    0.165  1169.77  0.000 
Level      0.26416  0.04989     5.29  0.000 
 
S = 0.352786   R-Sq = 54.9%   R-Sq(adj) = 53.0% 
 
Analysis of Variance 
 
Source          DF      SS      MS      F      P 
Regression       1  3.4890  3.4890  28.03  0.000 
Residual Error  23  2.8625  0.1245 
Total           24  6.3516 
 
Unusual Observations 
 
             Ggrep Exp 
                     3 
            (Execution 
Obs  Level       Time)      Fit  SE Fit  Residual  St Resid 
  4   1.00     193.156  193.827   0.122    -0.671     -2.03R 
 
R denotes an observation with a large standardized residual. 

The regression equation is 
Ggrep Exp  2 (Execution Time) = 4.74 + 0.00308 Level 
 
Predictor       Coef    SE Coef        T      P 
Constant     4.73828    0.00274  1730.36  0.000 
Level      0.0030800  0.0008256     3.73  0.001 
 
S = 0.00583811   R-Sq = 37.7%   R-Sq(adj) = 35.0% 
 
Analysis of Variance 
 
Source          DF          SS          MS      F      P 
Regression       1  0.00047432  0.00047432  13.92  0.001 
Residual Error  23  0.00078392  0.00003408 
Total           24  0.00125824 
 
Unusual Observations 
 
             Ggrep Exp 
                     2 
            (Execution 
Obs  Level       Time)      Fit   SE Fit  Residual  St Resid 
 18   4.00     4.76500  4.75060  0.00143   0.01440      2.54R 
 
R denotes an observation with a large standardized residual. 
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Figure A.9. 4-in-1 Plot for Ggrep Expression 1 with OllyDbg and Optimization On, 

Levels 1-5 
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Figure A.10. 4-in-1 Plot for Ggrep Expression 3 with OllyDbg and Optimization On, 

Levels 1-5 
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Figure A.11. Mean Interval Plot of LU with OllyDbg and Optimization Off 
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Figure A.12. Mean Interval Plot of Monte with OllyDbg and Optimization Off 
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Figure A.13. Mean Interval Plot of SOR with OllyDbg and Optimization Off 
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Figure A.14. Mean Interval Plot of Sparse with OllyDbg and Optimization Off 
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Figure A.15. Mean Interval Plot of LU with OllyDbg and Optimization Off Levels 1-2 
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Figure A.16. Mean Interval Plot of Monte with OllyDbg and Optimization Off Levels 1-2 
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Figure A.17. Mean Interval Plot of SOR with OllyDbg and Optimization Off Levels 1-2 
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Figure A.18. Mean Interval Plot of Sparse with OllyDbg and Optimization Off Levels 1-2 

 

 



 

92 

 

Figure A.19. Regression Model for LU with OllyDbg and Optimization Off, Levels 1-5 
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Figure A.20. 4-in-1 Plot for LU with OllyDbg and Optimization Off, Levels 1-5 

 

 

 

The regression equation is 
LU Execution Time (s) = - 348 + 245 Level 
 
Predictor     Coef  SE Coef      T      P 
Constant   -348.26    40.44  -8.61  0.000 
Level       245.36    12.19  20.12  0.000 
 
S = 86.2154   R-Sq = 94.6%   R-Sq(adj) = 94.4% 
 
Analysis of Variance 
 
Source          DF       SS       MS       F      P 
Regression       1  3010161  3010161  404.97  0.000 
Residual Error  23   170961     7433 
Total           24  3181123 
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Figure A.21. Regression Model for Monte w/ OllyDbg and Optimization Off, Levels 1-5 
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Figure A.22. 4-in-1 Plot for Monte with OllyDbg and Optimization Off, Levels 1-5 

 

The regression equation is 
Monte Execution Time (s) = - 1668 + 1159 Level 
 
Predictor     Coef  SE Coef      T      P 
Constant   -1668.5    191.5  -8.71  0.000 
Level      1158.51    57.75  20.06  0.000 
 
S = 408.339   R-Sq = 94.6%   R-Sq(adj) = 94.4% 
 
Analysis of Variance 
 
Source          DF        SS        MS       F      P 
Regression       1  67107139  67107139  402.46  0.000 
Residual Error  23   3835036    166741 
Total           24  70942175 
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Figure A.23. Regression Model for SOR with OllyDbg and Optimization Off, Levels 1-5 
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Figure A.24. 4-in-1 Plot for SOR with OllyDbg and Optimization Off, Levels 1-5 

 

 

The regression equation is 
SOR Opt-Off Execution Time (s) = - 14398 + 9771 Level 
 
Predictor    Coef  SE Coef      T      P 
Constant   -14398     1624  -8.86  0.000 
Level      9770.6    489.7  19.95  0.000 
 
S = 3462.89   R-Sq = 94.5%   R-Sq(adj) = 94.3% 
 
Analysis of Variance 
 
Source          DF          SS          MS       F      P 
Regression       1  4773261136  4773261136  398.05  0.000 
Residual Error  23   275806796    11991600 
Total           24  5049067932 
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Figure A.25. Regression Model for Sparse w/ OllyDbg and Optimization Off, Levels 1-5 
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Figure A.26. 4-in-1 Plot for Sparse with OllyDbg and Optimization Off, Levels 1-5 

 

 

The regression equation is 
Sparse Execution Time (s) = - 24950 + 17273 Level 
 
Predictor     Coef  SE Coef      T      P 
Constant    -24950     2854  -8.74  0.000 
Level      17273.4    860.6  20.07  0.000 
 
S = 6085.30   R-Sq = 94.6%   R-Sq(adj) = 94.4% 
 
Analysis of Variance 
 
Source          DF           SS           MS       F      P 
Regression       1  14918497410  14918497410  402.87  0.000 
Residual Error  23    851710254     37030881 
Total           24  15770207664 
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Figure A.27. Mean Interval Plot of LU with OllyDbg and Optimization On Levels 1-5 
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Figure A.28. Mean Interval Plot of Monte with OllyDbg and Optimization On Levels 1-2 
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Figure A.29. Mean Interval Plot of SOR with OllyDbg and Optimization On Levels 1-5 
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Figure A.30. Mean Interval Plot of Sparse with OllyDbg and Optimization On Levels 1-5 
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Figure A.31. Regression Model for LU w/ OllyDbg and Optimization On, Levels 1-5 
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Figure A.32. 4-in-1 Plot for LU with OllyDbg and Optimization On, Levels 1-5 

 

The regression equation is 
LU (Execution Time) = 3.63 + 1.55 Level 
 
Predictor    Coef  SE Coef     T      P 
Constant   3.6323   0.5948  6.11  0.000 
Level      1.5484   0.1793  8.63  0.000 
 
S = 1.26819   R-Sq = 76.4%   R-Sq(adj) = 75.4% 
 
Analysis of Variance 
 
Source          DF      SS      MS      F      P 
Regression       1  119.88  119.88  74.54  0.000 
Residual Error  23   36.99    1.61 
Total           24  156.87 

 



 

99 

 

Figure A.33. Regression Model for Monte w/ OllyDbg and Optimization On, Levels 1-5 
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Figure A.34. 4-in-1 Plot for Monte with OllyDbg and Optimization On, Levels 1-5 

 

The regression equation is 
Monte (Execution Time) = 4.34 + 0.234 Level 
 
Predictor      Coef   SE Coef       T      P 
Constant    4.34200   0.00695  625.09  0.000 
Level      0.233600  0.004393   53.17  0.000 
 
S = 0.00694622   R-Sq = 99.7%   R-Sq(adj) = 99.7% 
 
Analysis of Variance 
 
Source          DF       SS       MS        F      P 
Regression       1  0.13642  0.13642  2827.41  0.000 
Residual Error   8  0.00039  0.00005 
Total            9  0.13681 
 
Unusual Observations 
 
                 Monte 
            (Execution 
Obs  Level       Time)      Fit   SE Fit  Residual  St Resid 
  3   1.00     4.56300  4.57560  0.00311  -0.01260     -2.03R 
 
R denotes an observation with a large standardized residual. 
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Figure A.35. Regression Model for SOR w/ OllyDbg and Optimization On, Levels 1-5 
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Figure A.36. 4-in-1 Plot for SOR with OllyDbg and Optimization On, Levels 1-5 

The regression equation is 
SOR (Execution Time) = 1.44 + 4.37 Level 
 
Predictor    Coef  SE Coef     T      P 
Constant    1.438    1.720  0.84  0.412 
Level      4.3679   0.5187  8.42  0.000 
 
S = 3.66802   R-Sq = 75.5%   R-Sq(adj) = 74.4% 
 
Analysis of Variance 
 
Source          DF       SS      MS      F      P 
Regression       1   953.94  953.94  70.90  0.000 
Residual Error  23   309.45   13.45 
Total           24  1263.39 
 
Unusual Observations 
 
                   SOR 
            (Execution 
Obs  Level       Time)     Fit  SE Fit  Residual  St Resid 
 13   3.00      22.050  14.542   0.734     7.508      2.09R 
 
R denotes an observation with a large standardized residual. 
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Figure A.37. Regression Model for Sparse w/ OllyDbg and Optimization On, Levels 1-5 
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Figure A.38. 4-in-1 Plot for Sparse with OllyDbg and Optimization On, Levels 1-5 

 

 

 

The regression equation is 
Sparse (Execution Time) = - 3.23 + 11.9 Level 
 
Predictor    Coef  SE Coef      T      P 
Constant   -3.233    4.281  -0.76  0.458 
Level      11.916    1.291   9.23  0.000 
 
S = 9.12728   R-Sq = 78.7%   R-Sq(adj) = 77.8% 
 
Analysis of Variance 
 
Source          DF      SS      MS      F      P 
Regression       1  7100.0  7100.0  85.23  0.000 
Residual Error  23  1916.1    83.3 
Total           24  9016.1 
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Figure A.39. Mean Interval Plot of FFT with Optimization On and Off with OllyDbg, 

Levels 1-2 
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Figure A.40. Mean Interval Plot of LU with Optimization On and Off with OllyDbg, 

Levels 1-2 
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Figure A.41. Mean Interval Plot of SOR with Optimization On and Off with OllyDbg, 

Levels 1-2 
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Figure A.42. Mean Interval Plot of Sparse with Optimization On and Off with OllyDbg, 

Levels 1-2 
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Table A.1. Ggrep with Optimization Off and IDAPro, Levels 1-5 

Level 

Test 

Expression Mean St-Dev 

90% Confidence 

Interval 

1 (baseline) Expression 1 18.394 0.008 [18.386, 18.402] 

2 (hidden function in use) Expression 1 18.462 0.049 [18.416, 18.509] 

3 (hidden function w/ 4 

threads) Expression 1 18.36 0.131 [18.235, 18.485] 

4 (hidden function w/ 8 

threads) 

Expression 1 

18.394 0.087 [18.311, 18.477] 

5 (hidden function w/ 12 

threads) 

Expression 1 

18.378 0.086 [18.295, 18.46] 

1 (baseline) Expression 2 5.3904 0.0005 [5.3899, 5.3909] 

2 (hidden function in use) Expression 2 5.3874 0.0069 [5.3808, 5.3940] 

3 (hidden function w/ 4 

threads) 

Expression 2 

5.3686 0.0088 [5.3602, 5.3770] 

4 (hidden function w/ 8 

threads) 

Expression 2 

5.3752 0.0153 [5.3607, 5.3897] 

5 (hidden function w/ 12 

threads) 

Expression 2 

5.369 0.0082 [5.3612, 5.3768] 

1 (baseline) Expression 3 219.1 0.12 [218.98, 219.21] 

2 (hidden function in use) Expression 3 218.98 1.43 [217.62, 220.35] 

3 (hidden function w/ 4 

threads) 

Expression 3 

217.22 0.09 [217.13, 217.30] 

4 (hidden function w/ 8 

threads) 

Expression 3 

217.27 0.08 [217.20, 217.34] 

5 (hidden function w/ 12 

threads) 

Expression 3 

217.38 0.39 [217.01, 217.76] 
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Figure A.43. Mean Interval Plot of Ggrep Expression 1 w/ IDAPro and Optimization Off 
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Figure A.44. Mean Interval Plot of Ggrep Expression 2 w/ IDAPro and Optimization Off 
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Figure A.45. Mean Interval Plot of Ggrep Expression 3 w/ IDAPro and Optimization Off 
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Figure A.46. Mean Interval Plot of FFT with IDAPro and Optimization Off 
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Figure A.47. Mean Interval Plot of LU with IDAPro and Optimization Off 
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Figure A.48. Mean Interval Plot of Monte with IDAPro and Optimization Off 
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Figure A.49. Mean Interval Plot of SOR with IDAPro and Optimization Off 
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Figure A.50. Mean Interval Plot of Sparse with IDAPro and Optimization Off 
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Figure A.51. Mean Interval Plot of FFT with IDAPro and Optimization Off, Levels 1 and 

2 
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Figure A.52. Mean Interval Plot of LU with IDAPro and Optimization Off, Levels 1 and 

2 
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Figure A.53. Mean Interval Plot of Monte with IDAPro and Optimization Off, Levels 1 

and 2 
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Figure A.54. Mean Interval Plot of SOR with IDAPro and Optimization Off, Levels 1 and 

2 
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Figure A.55. Mean Interval Plot of Sparse with IDAPro and Optimization Off, Levels 1 

and 2 

 

 

Figure A.56. Regression Model for Ggrep Expression 1 w/ IDAPro and Optimization Off, 

Levels 1-5 

 

The regression equation is 
Ggrep Exp 1 (Execution Time) = 18.4 - 0.0101 Level 
 
Predictor      Coef  SE Coef       T      P 
Constant    18.4281   0.0396  465.42  0.000 
Level      -0.01014  0.01194   -0.85  0.404 
 
S = 0.0844158   R-Sq = 3.0%   R-Sq(adj) = 0.0% 
 
Analysis of Variance 
 
Source          DF        SS        MS     F      P 
Regression       1  0.005141  0.005141  0.72  0.404 
Residual Error  23  0.163899  0.007126 
Total           24  0.169040 
 
Unusual Observations 
 
             Ggrep Exp 
                     1 
            (Execution 
Obs  Level       Time)      Fit  SE Fit  Residual  St Resid 
 12   3.00     18.5880  18.3976  0.0169    0.1904      2.30R 
 
R denotes an observation with a large standardized residual. 
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Figure A.57. 4-in-1 Plot for Ggrep Expression 1 with IDAPro and Optimization Off, 

Levels 1-5 

 

 

Figure A.58. Regression Model for Ggrep Expression 2 w/ IDAPro and Optimization Off, 

Levels 1-5 

The regression equation is 
Ggrep Exp  2 (Execution Time) = 5.39 - 0.00550 Level 
 
Predictor       Coef   SE Coef        T      P 
Constant     5.39462   0.00468  1153.62  0.000 
Level      -0.005500  0.001410    -3.90  0.001 
 
S = 0.00996982   R-Sq = 39.8%   R-Sq(adj) = 37.2% 
 
Analysis of Variance 
 
Source          DF         SS         MS      F      P 
Regression       1  0.0015125  0.0015125  15.22  0.001 
Residual Error  23  0.0022861  0.0000994 
Total           24  0.0037986 
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Figure A.59. 4-in-1 Plot for Ggrep Expression 2 with IDAPro and Optimization Off, 

Levels 1-5 

 

 

Figure A.60. Regression Model for Ggrep Expression 3 w/ IDAPro and Optimization Off, 

Levels 1-5 

 

The regression equation is 
Ggrep Exp  3 (Execution Time) = 220 - 0.514 Level 
 
Predictor     Coef  SE Coef       T      P 
Constant   219.532    0.368  596.60  0.000 
Level      -0.5141   0.1109   -4.63  0.000 
 
S = 0.784526   R-Sq = 48.3%   R-Sq(adj) = 46.0% 
 
Analysis of Variance 
 
Source          DF      SS      MS      F      P 
Regression       1  13.215  13.215  21.47  0.000 
Residual Error  23  14.156   0.615 
Total           24  27.371 
 
Unusual Observations 
 
             Ggrep Exp 
                     3 
            (Execution 
Obs  Level       Time)      Fit  SE Fit  Residual  St Resid 
  8   2.00     221.531  218.504   0.192     3.027      3.98R 
 
R denotes an observation with a large standardized residual. 
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Figure A.61. 4-in-1 Plot for Ggrep Expression 3 with IDAPro and Optimization Off, 

Levels 1-5 

 

 

Table A.2. Mean of Differences (Is there a statistically significant difference present?) 

using Ggrep Expression 1 with Optimization Off and IDAPro 

Level Level 1 Level 2 Level 3 Level 4 Level 5 

1 (baseline) X YES NO NO NO 

2 (hidden function in use) X X YES NO YES 

3 (hidden function w/ 4 threads) X X X NO NO 

4 (hidden function w/ 8 threads) X X X X NO 

5 (hidden function w/ 12 threads) X X X X X 
 

 

Table A.3. Mean of Differences (Is there a statistically significant difference present?) 

using Ggrep Expression 2 with Optimization Off and IDAPro 

Level Level 1 Level 2 Level 3 Level 4 Level 5 

1 (baseline) X NO YES YES YES 

2 (hidden function in use) X X YES NO YES 

3 (hidden function w/ 4 threads) X X X NO NO 

4 (hidden function w/ 8 threads) X X X X NO 

5 (hidden function w/ 12 threads) X X X X X 
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Table A.4. Mean of Differences (Is there a statistically significant difference present?) 

using Ggrep Expression 3 with Optimization Off and IDAPro 

Level Level 1 Level 2 Level 3 Level 4 Level 5 

1 (baseline) X NO YES YES YES 

2 (hidden function in use) X X YES YES YES 

3 (hidden function w/ 4 threads) X X X NO NO 

4 (hidden function w/ 8 threads) X X X X NO 

5 (hidden function w/ 12 threads) X X X X X 
 

Table A.5. SciMark2 with Optimization Off and IDAPro, Levels 1-5 

Level Function Mean St-Dev 

90% Confidence 

Interval 

1 (baseline) FFT 2.762 0.0067 [2.7556, 2.7684] 

2 (hidden function in use) FFT 9.756 0.0082 [9.7482, 9.7638] 

3 (hidden function w/ 4 threads) FFT 15131 2568 [12683, 17580] 

4 (hidden function w/ 8 threads) FFT 37011 2564 [34567, 39456] 

5 (hidden function w/ 12 threads) FFT 39510 3081 [36572, 42447] 

1 (baseline) LU 5.4092 0.0072 [5.4024, 5.410] 

2 (hidden function in use) LU 5.8344 0.0088 [5.8260, 5.8428] 

3 (hidden function w/ 4 threads) LU 379.87 87.71 [296.24, 463.49] 

4 (hidden function w/ 8 threads) LU 839.94 142.5 [704.08, 975.80] 

5 (hidden function w/ 12 threads) LU 1040.3 195.2 [854.2, 1226.4] 

1 (baseline) Monte 4.583 0.0435 [4.515, 5.6245] 

2 (hidden function in use) Monte 5.8908 0.0004 [5.8904, 5.8910] 

3 (hidden function w/ 4 threads) Monte 1690 305.8 [1398.4, 1981.6] 

4 (hidden function w/ 8 threads) Monte 4312.5 85.6 [4230.9, 4394.1] 

5 (hidden function w/ 12 threads) Monte 4295.6 67.1 [4231.6, 4359.6] 

1 (baseline) SOR 4.744 0.0082 [4.7362, 4.7518] 

2 (hidden function in use) SOR 6.456 0.0125 [6.4440, 6.4680] 

3 (hidden function w/ 4 threads) SOR 14583 737 [13881, 15286] 

4 (hidden function w/ 8 threads) SOR 25997 706 [25324, 26671] 

5 (hidden function w/ 12 threads) SOR 26037 400 [25656, 26418] 

1 (baseline) Sparse 5.6128 0.0129 [5.6005, 5.6251] 

2 (hidden function in use) Sparse 13.5 0.011 [13.489, 13.511] 

3 (hidden function w/ 4 threads) Sparse 25538 4428 [21317, 29759] 

4 (hidden function w/ 8 threads) Sparse 59287 6330 [53252, 65323] 

5 (hidden function w/ 12 threads) Sparse 66613 4345 [62471, 70756] 
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Figure A.62. Regression Model for FFT w/ IDAPro and Optimization Off, Levels 1-5 
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Figure A.63. 4-in-1 Plot for FFT with IDAPro and Optimization Off, Levels 1-5 

 

The regression equation is 
FFT (Execution Time) = - 16472 + 11602 Level 
 
Predictor     Coef  SE Coef      T      P 
Constant    -16472     2692  -6.12  0.000 
Level      11601.5    811.6  14.29  0.000 
 
S = 5738.77   R-Sq = 89.9%   R-Sq(adj) = 89.4% 
 
Analysis of Variance 
 
Source          DF          SS          MS       F      P 
Regression       1  6729778258  6729778258  204.34  0.000 
Residual Error  23   757470477    32933499 
Total           24  7487248735 
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Figure A.64. Regression Model for LU w/ IDAPro and Optimization Off, Levels 1-5 
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Figure A.65. 4-in-1 Plot for LU with IDAPro and Optimization Off, Levels 1-5 

 

 

 

The regression equation is 
LU (Execution Time) = - 417 + 290 Level 
 
Predictor     Coef  SE Coef      T      P 
Constant   -416.89    72.50  -5.75  0.000 
Level       290.39    21.86  13.28  0.000 
 
S = 154.576   R-Sq = 88.5%   R-Sq(adj) = 88.0% 
 
Analysis of Variance 
 
Source          DF       SS       MS       F      P 
Regression       1  4216262  4216262  176.46  0.000 
Residual Error  23   549560    23894 
Total           24  4765822 
 
Unusual Observations 
 
                    LU 
            (Execution 
Obs  Level       Time)     Fit  SE Fit  Residual  St Resid 
 21   5.00      1342.9  1035.0    53.5     307.9      2.12R 
 
R denotes an observation with a large standardized residual. 
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Figure A.66. Regression Model for Monte w/ IDAPro and Optimization Off, Levels 1-5 
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Figure A.67. 4-in-1 Plot for Monte with IDAPro and Optimization Off, Levels 1-5 

 

The regression equation is 
Monte (Execution Time) = - 1805 + 1289 Level 
 
Predictor     Coef  SE Coef      T      P 
Constant   -1804.9    318.8  -5.66  0.000 
Level      1288.87    96.13  13.41  0.000 
 
S = 679.708   R-Sq = 88.7%   R-Sq(adj) = 88.2% 
 
Analysis of Variance 
 
Source          DF        SS        MS       F      P 
Regression       1  83059113  83059113  179.78  0.000 
Residual Error  23  10626056    462002 
Total           24  93685169 
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Figure A.68. Regression Model for SOR w/ IDAPro and Optimization Off, Levels 1-5 
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Figure A.69. 4-in-1 Plot for SOR with IDAPro and Optimization Off, Levels 1-5 

 

The regression equation is 
SOR (Execution Time) = - 10091 + 7805 Level 
 
Predictor    Coef  SE Coef      T      P 
Constant   -10091     1833  -5.50  0.000 
Level      7805.5    552.8  14.12  0.000 
 
S = 3908.69   R-Sq = 89.7%   R-Sq(adj) = 89.2% 
 
Analysis of Variance 
 
Source          DF          SS          MS       F      P 
Regression       1  3046285658  3046285658  199.39  0.000 
Residual Error  23   351390457    15277846 
Total           24  3397676115 
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Figure A.70. Regression Model for Sparse w/ IDAPro and Optimization Off, Levels 1-5 
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Figure A.71. 4-in-1 Plot for Sparse with IDAPro and Optimization Off, Levels 1-5 

 

Table A.6. Mean of Differences (Is there a statistically significant difference present?) 

using FFT with Optimization Off and IDAPro 

Level Level 1 Level 2 Level 3 Level 4 Level 5 

1 (baseline) X YES YES YES YES 

2 (hidden function in use) X X YES YES YES 

3 (hidden function w/ 4 threads) X X X YES YES 

4 (hidden function w/ 8 threads) X X X X NO 

5 (hidden function w/ 12 threads) X X X X X 
 

The regression equation is 
Sparse (Execution Time) = - 27455 + 19249 Level 
 
Predictor    Coef  SE Coef      T      P 
Constant   -27455     4231  -6.49  0.000 
Level       19249     1276  15.09  0.000 
 
S = 9019.99   R-Sq = 90.8%   R-Sq(adj) = 90.4% 
 
Analysis of Variance 
 
Source          DF           SS           MS       F      P 
Regression       1  18526101803  18526101803  227.70  0.000 
Residual Error  23   1871283308     81360144 
Total           24  20397385111 
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Table A.7. Mean of Differences (Is there a statistically significant difference present?) 

using LU with Optimization Off and IDAPro 

Level Level 1 Level 2 Level 3 Level 4 Level 5 

1 (baseline) X YES YES YES YES 

2 (hidden function in use) X X YES YES YES 

3 (hidden function w/ 4 threads) X X X YES YES 

4 (hidden function w/ 8 threads) X X X X YES 

5 (hidden function w/ 12 threads) X X X X X 
 

 

Table A.8. Mean of Differences (Is there a statistically significant difference present?) 

using Monte with Optimization Off and IDAPro 

Level Level 1 Level 2 Level 3 Level 4 Level 5 

1 (baseline) X YES YES YES YES 

2 (hidden function in use) X X YES YES YES 

3 (hidden function w/ 4 threads) X X X YES YES 

4 (hidden function w/ 8 threads) X X X X NO 

5 (hidden function w/ 12 threads) X X X X X 

 

Table A.9. Mean of Differences (Is there a statistically significant difference present?) 

using SOR with Optimization Off and IDAPro 

Level Level 1 Level 2 Level 3 Level 4 Level 5 

1 (baseline) X YES YES YES YES 

2 (hidden function in use) X X YES YES YES 

3 (hidden function w/ 4 threads) X X X YES YES 

4 (hidden function w/ 8 threads) X X X X NO 

5 (hidden function w/ 12 threads) X X X X X 
 

 

Table A.10. Mean of Differences (Is there a statistically significant difference present?) 

using Sparse with Optimization Off and IDAPro 

Level Level 1 Level 2 Level 3 Level 4 Level 5 

1 (baseline) X YES YES YES YES 

2 (hidden function in use) X X YES YES YES 

3 (hidden function w/ 4 threads) X X X YES YES 

4 (hidden function w/ 8 threads) X X X X YES 

5 (hidden function w/ 12 threads) X X X X X 
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Table A.11. Ggrep with Optimization On and IDAPro, Levels 1-5 

Level 

Ggrep 

Expression Mean St-Dev 

90% Confidence 

Interval 

1 (baseline) Expression 1 16.159 0.112 [16.052, 16.265] 

2 (hidden function in use) Expression 1 16.096 0.011 [16.086, 16.107] 

3 (hidden function w/ 4 threads) Expression 1 16.115 0.026 [16.090, 16.139] 

4 (hidden function w/ 8 threads) Expression 1 16.109 0.007 [16.102, 16.115] 

5 (hidden function w/ 12 threads) Expression 1 16.217 0.151 [16.073, 16.361] 

1 (baseline) Expression 2 4.7282 0.0138 [4.7150, 4.7414] 

2 (hidden function in use) Expression 2 4.744 0.0082 [4.7362, 4.7518] 

3 (hidden function w/ 4 threads) Expression 2 4.753 0.0067 [4.7466, 4.7594] 

4 (hidden function w/ 8 threads) Expression 2 4.75 0 [4.750, 4.750] 

5 (hidden function w/ 12 threads) Expression 2 4.7532 0.0072 [4.7464, 4.76] 

1 (baseline) Expression 3 193.35 0.23 [193.13, 193.57] 

2 (hidden function in use) Expression 3 194.46 0.04 [194.42, 194.50] 

3 (hidden function w/ 4 threads) Expression 3 194.59 0.09 [194.51, 194.67] 

4 (hidden function w/ 8 threads) Expression 3 194.84 0.37 [194.50, 195.19] 

5 (hidden function w/ 12 threads) Expression 3 196.1 3.56 [192.71, 199.5] 
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Figure A.72. Mean Interval Plot of Ggrep Expression 1 w/ IDAPro and Optimization On 
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Figure A.73. Mean Interval Plot of Ggrep Expression 2 w/ IDAPro and Optimization On 
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Figure A.74. Mean Interval Plot of Ggrep Expression 3 w/ IDAPro and Optimization On 
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Figure A.75. Mean Interval Plot of FFT w/ IDAPro and Optimization On 

 

Level

L
U
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

54321

14

13

12

11

10

9

8

7

6

5

12.514
12.71912.8474

6.5406

6.0358

Interval Plot of LU Execution Time (s) vs Level
90% CI for the Mean

 

Figure A.76. Mean Interval Plot of LU w/ IDAPro and Optimization On 
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Figure A.77. Mean Interval Plot of SOR w/ IDAPro and Optimization On 
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Figure A.78. Mean Interval Plot of Sparse w/ IDAPro and Optimization On 
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Figure A.79. Mean Interval Plot of FFT w/ IDAPro and Optimization On, Levels 1 and 2 
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Figure A.80. Mean Interval Plot of LU w/ IDAPro and Optimization On, Levels 1 and 2 
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Figure A.81. Mean Interval Plot of Monte w/ IDAPro and Optimization On, Levels 1 and 

2 
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Figure A.82. Mean Interval Plot of SOR w/ IDAPro and Optimization On, Levels 1 and 2 
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Figure A.83. Mean Interval Plot of Sparse w/ IDAPro and Optimization On, Levels 1 and 

2 

 

 

 

Figure A.84. Regression Model for Ggrep Expression 1 w/ IDAPro and Optimization On, 

Levels 1-5 

 

The regression equation is 
Ggrep Exp 1 (Execution Time) = 16.1 + 0.0129 Level 
 
Predictor     Coef  SE Coef       T      P 
Constant   16.1004   0.0421  382.51  0.000 
Level      0.01292  0.01269    1.02  0.319 
 
S = 0.0897393   R-Sq = 4.3%   R-Sq(adj) = 0.2% 
 
Analysis of Variance 
 
Source          DF        SS        MS     F      P 
Regression       1  0.008346  0.008346  1.04  0.319 
Residual Error  23  0.185222  0.008053 
Total           24  0.193569 
 
Unusual Observations 
             Ggrep Exp 
                     1 
            (Execution 
Obs  Level       Time)      Fit  SE Fit  Residual  St Resid 
  2   1.00     16.3310  16.1133  0.0311    0.2177      2.59R 
 22   5.00     16.4560  16.1650  0.0311    0.2910      3.46R 
 
R denotes an observation with a large standardized residual. 
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Figure A.85. 4-in-1 Plot for Ggrep Expression 1 with IDAPro and Optimization On, 

Levels 1-5 

 

 

Figure A.86. Regression Model for Ggrep Expression 2 w/ IDAPro and Optimization On, 

Levels 1-5 

 

The regression equation is 
Ggrep Exp  2 (Execution Time) = 4.73 + 0.00560 Level 
 
Predictor      Coef   SE Coef        T      P 
Constant    4.72888   0.00441  1071.72  0.000 
Level      0.005600  0.001330     4.21  0.000 
 
S = 0.00940731   R-Sq = 43.5%   R-Sq(adj) = 41.1% 
 
Analysis of Variance 
 
Source          DF         SS         MS      F      P 
Regression       1  0.0015680  0.0015680  17.72  0.000 
Residual Error  23  0.0020354  0.0000885 
Total           24  0.0036034 
 
Unusual Observations 
 
             Ggrep Exp 
                     2 
            (Execution 
Obs  Level       Time)      Fit   SE Fit  Residual  St Resid 
 11   3.00     4.76500  4.74568  0.00188   0.01932      2.10R 
 
R denotes an observation with a large standardized residual. 
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Figure A.87. 4-in-1 Plot for Ggrep Expression 2 with IDAPro and Optimization On, 

Levels 1-5 

 

 

Figure A.88. Regression Model for Ggrep Expression 3 w/ IDAPro and Optimization On, 

Levels 1-5 

 

The regression equation is 
Ggrep Exp  3 (Execution Time) = 193 + 0.590 Level 
 
Predictor     Coef  SE Coef       T      P 
Constant   192.899    0.716  269.32  0.000 
Level       0.5901   0.2160    2.73  0.012 
 
S = 1.52702   R-Sq = 24.5%   R-Sq(adj) = 21.2% 
 
Analysis of Variance 
 
Source          DF      SS      MS     F      P 
Regression       1  17.409  17.409  7.47  0.012 
Residual Error  23  53.631   2.332 
Total           24  71.040 
 
Unusual Observations 
 
             Ggrep Exp 
                     3 
            (Execution 
Obs  Level       Time)      Fit  SE Fit  Residual  St Resid 
 21   5.00     202.469  195.849   0.529     6.620      4.62R 
 
R denotes an observation with a large standardized residual. 
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Figure A.89. 4-in-1 Plot for Ggrep Expression 3 with IDAPro and Optimization On, 

Levels 1-5 

 

Table A.12. Mean of Differences (Is there a statistically significant difference present?) 

using Ggrep Expression 1 with Optimization On and IDAPro 

Level Level 1 Level 2 Level 3 Level 4 Level 5 

1 (baseline) X NO NO NO NO 

2 (hidden function in use) X X NO NO NO 

3 (hidden function w/ 4 threads) X X X NO NO 

4 (hidden function w/ 8 threads) X X X X NO 

5 (hidden function w/ 12 threads) X X X X X 
 

 

Table A.13. Mean of Differences (Is there a statistically significant difference present?) 

using Ggrep Expression 2 with Optimization On and IDAPro 

Level Level 1 Level 2 Level 3 Level 4 Level 5 

1 (baseline) X NO YES YES YES 

2 (hidden function in use) X X YES NO YES 

3 (hidden function w/ 4 threads) X X X NO NO 

4 (hidden function w/ 8 threads) X X X X NO 

5 (hidden function w/ 12 threads) X X X X X 
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Table A.14. Mean of Differences (Is there a statistically significant difference present?) 

using Ggrep Expression 3 with Optimization On and IDAPro 

Level Level 1 Level 2 Level 3 Level 4 Level 5 

1 (baseline) X YES YES YES NO 

2 (hidden function in use) X X YES YES NO 

3 (hidden function w/ 4 threads) X X X NO NO 

4 (hidden function w/ 8 threads) X X X X NO 

5 (hidden function w/ 12 threads) X X X X X 
 

Table A.15. SciMark2 with Optimization On and IDAPro, Levels 1-5 

Level Function Mean St-Dev 

90% Confidence 

Interval 

1 (baseline) FFT 4.832 0.2364 [4.6066, 5.0574] 

2 (hidden function in use) FFT 11.513 0.323 [11.205, 11.821] 

3 (hidden function w/ 4 threads) FFT 83.474 1.853 [81.708, 85.241] 

4 (hidden function w/ 8 threads) FFT 83.476 1.405 [82.136, 84.816] 

5 (hidden function w/ 12 threads) FFT 84.339 3.423 [81.076, 87.602] 

1 (baseline) LU 6.0358 0.6595 [5.4070, 6.6646] 

2 (hidden function in use) LU 6.5406 0.5956 [5.9728, 71.084] 

3 (hidden function w/ 4 threads) LU 12.847 0.646 [12.231, 13.464] 

4 (hidden function w/ 8 threads) LU 12.719 1.052 [11.716, 13.722] 

5 (hidden function w/ 12 threads) LU 12.514 0.408 [12.125, 12.903] 

1 (baseline) Monte 4.7824 0.0539 [4.7310, 4.8338] 

2 (hidden function in use) Monte 5.3706 0.2997 [5.0849, 5.6563] 

3 (hidden function w/ 4 threads) Monte N/A N/A N/A 

4 (hidden function w/ 8 threads) Monte N/A N/A N/A 

5 (hidden function w/ 12 threads) Monte N/A N/A N/A 

1 (baseline) SOR 6.1266 0.3651 [5.7785, 6.4747] 

2 (hidden function in use) SOR 9.0718 0.4013 [8.6892, 9.4544] 

3 (hidden function w/ 4 threads) SOR 21.55 1.762 [19.871, 23.230] 

4 (hidden function w/ 8 threads) SOR 20.616 1.518 [19.168, 22.063] 

5 (hidden function w/ 12 threads) SOR 20.634 2.437 [18.311, 22.958] 

1 (baseline) Sparse 7.0142 0.9644 [6.0947, 7.9337] 

2 (hidden function in use) Sparse 16.987 1.222 [15.822, 18.151] 

3 (hidden function w/ 4 threads) Sparse 60.84 4.283 [56.757, 64.923] 

4 (hidden function w/ 8 threads) Sparse 59.743 2.2 [57.646, 61.841] 

5 (hidden function w/ 12 threads) Sparse 57.542 0.592 [56.978, 58.107] 
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Figure A.90. Regression Model for FFT w/ IDAPro and Optimization On, Levels 1-5 
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Figure A.91. 4-in-1 Plot for FFT with IDAPro and Optimization On, Levels 1-5 

 

The regression equation is 
FFT (Execution Time) = - 15.8 + 23.1 Level 
 
Predictor     Coef  SE Coef      T      P 
Constant   -15.766    8.633  -1.83  0.081 
Level       23.098    2.603   8.87  0.000 
 
S = 18.4056   R-Sq = 77.4%   R-Sq(adj) = 76.4% 
 
Analysis of Variance 
 
Source          DF     SS     MS      F      P 
Regression       1  26675  26675  78.74  0.000 
Residual Error  23   7792    339 
Total           24  34467 
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Figure A.92. Regression Model for LU w/ IDAPro and Optimization On, Levels 1-5 
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Figure A.93. 4-in-1 Plot for LU with IDAPro and Optimization On, Levels 1-5 

 

 

 

 

 

The regression equation is 
LU (Execution Time) = 4.39 + 1.91 Level 
 
Predictor    Coef  SE Coef     T      P 
Constant   4.3909   0.8410  5.22  0.000 
Level      1.9135   0.2536  7.55  0.000 
 
S = 1.79293   R-Sq = 71.2%   R-Sq(adj) = 70.0% 
 
Analysis of Variance 
 
Source          DF      SS      MS      F      P 
Regression       1  183.07  183.07  56.95  0.000 
Residual Error  23   73.94    3.21 
Total           24  257.01 
 
Unusual Observations 
 
                    LU 
            (Execution 
Obs  Level       Time)     Fit  SE Fit  Residual  St Resid 
 12   3.00      13.837  10.131   0.359     3.706      2.11R 
 
R denotes an observation with a large standardized residual. 
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Figure A.94. Regression Model for Monte w/ IDAPro and Optimization On, Levels 1-5 
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Figure A.95. 4-in-1 Plot for Monte with IDAPro and Optimization On, Levels 1-5 

 

The regression equation is 
Monte (Execution Time) = 4.19 + 0.588 Level 
 
Predictor    Coef  SE Coef      T      P 
Constant   4.1942   0.2153  19.48  0.000 
Level      0.5882   0.1362   4.32  0.003 
 
S = 0.215323   R-Sq = 70.0%   R-Sq(adj) = 66.2% 
 
Analysis of Variance 
 
Source          DF       SS       MS      F      P 
Regression       1  0.86495  0.86495  18.66  0.003 
Residual Error   8  0.37091  0.04636 
Total            9  1.23586 
 
Unusual Observations 
 
                 Monte 
            (Execution 
Obs  Level       Time)     Fit  SE Fit  Residual  St Resid 
  8   2.00      5.8140  5.3706  0.0963    0.4434      2.30R 
 
R denotes an observation with a large standardized residual. 
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Figure A.96. Regression Model for SOR w/ IDAPro and Optimization On, Levels 1-5 
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Figure A.97. 4-in-1 Plot for SOR with IDAPro and Optimization On, Levels 1-5 

 

The regression equation is 
SOR Execution Time (s) = 3.43 + 4.06 Level 
 
Predictor    Coef  SE Coef     T      P 
Constant    3.432    1.737  1.98  0.060 
Level      4.0560   0.5237  7.74  0.000 
 
S = 3.70313   R-Sq = 72.3%   R-Sq(adj) = 71.1% 
 
Analysis of Variance 
 
Source          DF       SS      MS      F      P 
Regression       1   822.54  822.54  59.98  0.000 
Residual Error  23   315.40   13.71 
Total           24  1137.94 
 
Unusual Observations 
 
                  SOR 
            Execution 
Obs  Level   Time (s)     Fit  SE Fit  Residual  St Resid 
 13   3.00     23.545  15.600   0.741     7.945      2.19R 
 
R denotes an observation with a large standardized residual. 
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Figure A.98. Regression Model for Sparse w/ IDAPro and Optimization On, Levels 1-5 
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Figure A.99. 4-in-1 Plot for Sparse with IDAPro and Optimization On, Levels 1-5 

 

 

 

 

The regression equation is 
Sparse (Execution Time) = - 2.72 + 14.4 Level 
 
Predictor    Coef  SE Coef      T      P 
Constant   -2.719    5.791  -0.47  0.643 
Level      14.381    1.746   8.24  0.000 
 
S = 12.3462   R-Sq = 74.7%   R-Sq(adj) = 73.6% 
 
Analysis of Variance 
 
Source          DF     SS     MS      F      P 
Regression       1  10341  10341  67.84  0.000 
Residual Error  23   3506    152 
Total           24  13847 
 
Unusual Observations 
 
                Sparse 
            (Execution 
Obs  Level       Time)    Fit  SE Fit  Residual  St Resid 
 13   3.00       67.36  40.43    2.47     26.93      2.23R 
 
R denotes an observation with a large standardized residual. 
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Table A.16. Mean of Differences (Is there a statistically significant difference present?) 

using FFT with Optimization On and IDAPro 

Level Level 1 Level 2 Level 3 Level 4 Level 5 

1 (baseline) X YES YES YES YES 

2 (hidden function in use) X X YES YES YES 

3 (hidden function w/ 4 threads) X X X NO NO 

4 (hidden function w/ 8 threads) X X X X NO 

5 (hidden function w/ 12 threads) X X X X X 

 

Table A.17. Mean of Differences (Is there a statistically significant difference present?) 

using LU with Optimization On and IDAPro 

Level Level 1 Level 2 Level 3 Level 4 Level 5 

1 (baseline) X NO YES YES YES 

2 (hidden function in use) X X YES YES YES 

3 (hidden function w/ 4 threads) X X X NO NO 

4 (hidden function w/ 8 threads) X X X X NO 

5 (hidden function w/ 12 threads) X X X X X 

 

Table A.18. Mean of Differences (Is there a statistically significant difference present?) 

using Monte with Optimization On and IDAPro 

Level Level 1 Level 2 Level 3 Level 4 Level 5 

1 (baseline) X YES N/A N/A N/A 

2 (hidden function in use) X X N/A N/A N/A 

3 (hidden function w/ 4 threads) X X X N/A N/A 

4 (hidden function w/ 8 threads) X X X X N/A 

5 (hidden function w/ 12 threads) X X X X X 

 

Table A.19. Mean of Differences (Is there a statistically significant difference present?) 

using SOR with Optimization On and IDAPro 

Level Level 1 Level 2 Level 3 Level 4 Level 5 

1 (baseline) X YES YES YES YES 

2 (hidden function in use) X X YES YES YES 

3 (hidden function w/ 4 threads) X X X NO NO 

4 (hidden function w/ 8 threads) X X X X NO 

5 (hidden function w/ 12 threads) X X X X X 
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Table A.20. Mean of Differences (Is there a statistically significant difference present?) 

using Sparse with Optimization On and IDAPro 

Level Level 1 Level 2 Level 3 Level 4 Level 5 

1 (baseline) X YES YES YES YES 

2 (hidden function in use) X X YES YES YES 

3 (hidden function w/ 4 threads) X X X YES NO 

4 (hidden function w/ 8 threads) X X X X YES 

5 (hidden function w/ 12 threads) X X X X X 

 

Table A.21. Mean of Differences for Ggrep Expressions 1-3 with IDAPro, Optimization 

Off vs Optimization On (Is there a statistically significant difference between the same 

levels when optimization is on and off?) 

  Optimization-Off versus Optimization-On 

 Level 1 Level 2 Level 3 Level 4 Level 5 

Ggrep 

Expression 1 Yes Yes Yes Yes Yes 

Ggrep 

Expression 2 Yes Yes Yes Yes Yes 

Ggrep 

Expression 3 Yes Yes Yes Yes Yes 

 

Table A.22. Mean of Differences for SciMark2 with IDAPro, Optimization Off vs 

Optimization On (Is there a statistically significant difference between the same levels 

when optimization is on and off?) 

 Optimization-Off versus Optimization-On 

Function Level 1 Level 2 Level 3 Level 4 Level 5 

FFT Yes Yes Yes Yes Yes 

LU Yes Yes Yes Yes Yes 

Monte Yes Yes N/A N/A N/A 

SOR Yes Yes Yes Yes Yes 

Sparse Yes Yes Yes Yes Yes 
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Figure A.100. Mean Interval Plot of Ggrep Expression 1 w/ IDAPro and Optimization On 

versus Off 
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Figure A.101. Mean Interval Plot of Ggrep Expression 2 w/ IDAPro and Optimization On 

versus Off 
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Figure A.102. Mean Interval Plot of Ggrep Expression 3 w/ IDAPro and Optimization On 

versus Off 
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Figure A.103. Mean Interval Plot of FFT w/ IDAPro and Optimization On versus Off, 

Levels 1 and 2 
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Figure A.104. Mean Interval Plot of LU w/ IDAPro and Optimization On versus Off, 

Levels 1 and 2 
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Figure A.105. Mean Interval Plot of Monte w/ IDAPro and Optimization On versus Off, 

Levels 1 and 2 
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Figure A.106. Mean Interval Plot of SOR w/ IDAPro and Optimization On versus Off, 

Levels 1 and 2 
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Figure A.107. Mean Interval Plot of Sparse w/ IDAPro and Optimization On versus Off, 

Levels 1 and 2 
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Table A.23. Cost per thread Analysis for SciMark2 OllyDbg and IDAPro with 

Optimization Off 

 

Level 

Num 

Threads Function Mean 

Calls to 

Hidden 

Function 

Time per 

Call 

(Mean/Call) 

Time per 

Call/Num 

Threads 

3 4 FFT 15456 444542000 3.47684E-05 8.6921E-06 

4 8 FFT 26159 444542000 5.88448E-05 7.3556E-06 

5 12 FFT 38102 444542000 8.57107E-05 7.1426E-06 

3 4 LU 376.12 10700000 3.51514E-05 8.7879E-06 

4 8 LU 633.3 10700000 5.91869E-05 7.3984E-06 

5 12 LU 918.49 10700000 8.58402E-05 7.1533E-06 

3 4 Monte 1748.8 50005000 3.49725E-05 8.7431E-06 

4 8 Monte 2951.6 50005000 5.90261E-05 7.3783E-06 

5 12 Monte 4324.3 50005000 8.64774E-05 7.2064E-06 

3 4 SOR 12969 301974751 4.29473E-05 1.0737E-05 

4 8 SOR 25460 301974751 8.43117E-05 1.0539E-05 

5 12 SOR 36131 301974751 0.000119649 9.9708E-06 

3 4 Sparse 25909 748500000 3.46146E-05 8.6536E-06 

4 8 Sparse 44086 748500000 5.88991E-05 7.3624E-06 

5 12 Sparse 64337 748500000 8.59546E-05 7.1629E-06 

3 4 FFT 15131 444542000 3.40373E-05 2.8364E-06 

4 8 FFT 37011 444542000 8.32565E-05 6.938E-06 

5 12 FFT 39510 444542000 8.8878E-05 7.4065E-06 

3 4 LU 379.87 10700000 3.55019E-05 2.9585E-06 

4 8 LU 839.94 10700000 7.84991E-05 6.5416E-06 

5 12 LU 1040.3 10700000 9.72243E-05 8.102E-06 

3 4 Monte 1690 50005000 3.37966E-05 2.8164E-06 

4 8 Monte 4312.5 50005000 8.62414E-05 7.1868E-06 

5 12 Monte 4295.6 50005000 8.59034E-05 7.1586E-06 

3 4 SOR 14583 301974751 4.82921E-05 4.0243E-06 

4 8 SOR 25997 301974751 8.609E-05 7.1742E-06 

5 12 SOR 26037 301974751 8.62224E-05 7.1852E-06 

3 4 Sparse 25538 748500000 3.41189E-05 2.8432E-06 

4 8 Sparse 59287 748500000 7.92077E-05 6.6006E-06 

5 12 Sparse 66613 748500000 8.89953E-05 7.4163E-06 

              

          Average =  

7.04906E-

06 
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